QP Code: R252G032 Reg.						AY

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET UNIVERSITY)

24

M.Sc. (Second Semester - Regular) Examinations, July - 2025

24MPCMA12002 - Complex Analysis

(Mathematics)

	(Mathematics)				
Time	: 3 hrs	Maximum: 60 Marks			
PΔ	(The figures in the right hand margin indicate marks) $\mathbf{RT} - \mathbf{A}$	$(2 \times 5 = 10 \text{ Marks})$			
		(2 A S -			
Q.1. A	Answer ALL questions		CO#	Blooms Level	
a. V	What is the value of $\lim_{z\to 2i} (3x + iy^2)$.		CO1	K1	
b. I	Find the fixed points of $f(z) = z^2$.		CO3	КЗ	
c. S	Show that derivative of (\bar{z}) does not exist any where		CO2	K2	
d. I	Evaluate $\int (\bar{z})^2 dz$ around the circle $ z =1$.		CO2	K1	
e. I	Draw the figure of $ z = a$.		CO1	K2	
PA	RT - B	$(10 \times 5 = 50 \text{ Marks})$			
Answ	er ALL the questions	Marks	CO#	Blooms Level	
2. a.	State and prove Cauchy-Reimann Equation.	5	CO1	K5	
b.	Show that the function $f(z) = 4xy - x^3 + 3xy^2$ Harmonic and also find its	5	CO1	K5	
	Harmonic Conjugate	J	COI	113	
	(OR)				
c.	Prove that the function $ z^2 $ is continuous everywhere but nowere differentiable except at origin	5	CO1	K2	
d.	Find the bilinear transformation which maps the points $z_1=2, z_2=i, z_3=-2$	_	~~-		
	onto w_1=1,w_2=i,w_3=-1 respectively.	5	CO2	K5	
3.a.	State and proof Liouville's theorem.	5	CO3	K6	
b.	Using Cauchy integral formula evaluate $\int \frac{\cosh(\pi z)}{z(z-1)} dz$ over the circle $ z =2$.	5	CO2	K5	
	(OR)				
c.	Determine the number of zeros of the polynomial $P(z) = z^{10} - 6z^7 + 3z^3 +$	5	CO2	K 1	
	1 in z < 1.				
d.	State and proof Cauchy integral theorem.	5	CO2	K2	
4.a.	Find the radii of convergence (i) $\sum \frac{n!}{n^n} z^n$ (ii) $\sum \frac{z^n}{n^2}$.	5	CO5	K3	
b.	Prove that $\int_{-\infty}^{\infty} \frac{x^4}{x^6 - 1} dx = \frac{\pi\sqrt{3}}{6}.$	5	CO4	K2	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				
c.	If z, w be two complex numbers such that $z\overline{\ }w \neq 1$ and $ z < 1$, $ w < 1$. Prove				
	that $\left \frac{\{z-w\}}{\{1-z^2w\}} \right < 1$.	5	CO3	K3	
d	I(1-2 w)I				
d.	Determine the region of the w- plane into which each of following is mapped by the transformation $w=iz+1$, (i) $x>0$; $0< y<2$ of the z-plane.	5	CO2	K2	
5.a.	Expand $f(z) = \frac{1}{z}$ in a Taylor's series about $z = 1$.	4	CO6	К3	
	$\frac{Z}{Z}$	r	230	113	

b. Evaluate $\int_0^{2\pi} \frac{\cos 2\theta}{5+4\cos \theta} d\theta$. 6 CO6 **K**3 (OR) c. If $f(z) = \frac{z+4}{(z+3)(z-1)^2}$, find Laurent's series expand in, a) 0 < |z-1| < 4 b) |z-1| > 45 CO6 **K**3 d. State and prove Maximum Modules theorem. 5 CO4 K2 Prove that $\int_0^\infty \frac{\cos mx}{a^2+x^2} dx = \frac{\pi}{2a} e^{-ma}, \ m \ge 0.$ 5 CO4 K3 Find the poles of $f(z) = \frac{z^2+4}{z^3+2z^2+2z}$ and determine the residue at pole 5 CO5 **K**3 c. Find the singularities and write which type of singularity of given function $f(z) = \frac{z - \sin z}{z^3}.$ 5 CO6 K3 d. State and prove Cauchy's Residue theorem. 5 C04 K2

--- End of Paper ---