OD C 1 D050C040	n					
OP Code: R252G042	Reg.					А
(8.					

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET UNIVERSITY)

M.Sc. (Second Semester - Regular) Examinations, July - 2025

24MPHPC12004 – Quantum Mechanics-II

(Physics)

Tim	e: 3 hrs	Maximum: 60 Marks			
_	(The figures in the right-hand margin indicate marks)	(a =	4035	• \	
				rks)	
Q.1.	Answer ALL questions		CO#	Blooms Level	
a.	Explain the characteristics of Effective potential.		CO1	K1	
b.	The Hamiltonian of one-dimensional harmonic oscillator is given by: $H = \frac{P^2}{2m} + \frac{1}{2}$	$Kx^2 +$	CO2	K1	
	bx^n , separate the perturbed and unperturbed Hamiltonian?				
c.	What is variational method for approximation? What is the ground state energy atom by this method?	of He	CO3	K1	
d.	What are connection formulae?		CO4	K1	
e.	Mention the basic assumption of the Scattering theory.		CO5	K1	
PA	10 x 5 =	50 Ma	arks)		
Ansv	wer ALL the questions	Marks	CO#	Blooms Level	
2. a	. Determine the radial equation for motion of a body in spherically symmetric wave.	5	CO1	K2	
b	Evaluate the solution of Schrodinger's equation for a free particle in spherical polar coordinate system.	5	CO1	K2	
	(OR)				
c	Derive the Expression of plane waves in terms of spherical waves.	10	CO1	K2	
3.a	Evaluate the second order correction for the energy eigen value and eigen function in case of Time independent non-degenerate case. (OR)	10	CO2	K2	
b		10	CO2	K2	
4.a	Helium atom.	10	CO3	K2	
	(OR)				
b		10	CO3	K2	
5.a	Explain Born Approximation? Derive the expression for scattering amplitude using 1st Born approximation and discuss its validity. (OR)	10	CO4	K2	
b		5	CO4	K1	
c	Discuss the method of partial wave analysis scattering.	5	CO4	K1	
6.a	Derive the total scattering cross section a thigh energy by a Hard sphere using	40	605	1/2	
	the method of Partial wave analysis.	10	CO5	K2	
	(OR)				
b	. Discuss about Resonant Scattering.	5	CO5	K1	
c	Derive the Scattering cross section from a square potential well.	5	CO5	K2	
	End of Paper				