| Reg. |  |  |  |  |  |
|------|--|--|--|--|--|
| No   |  |  |  |  |  |

AY 24



QP Code: R252G025

## Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET UNIVERSITY)

M.Sc. (Second Semester - Regular) Examinations, July - 2025

## 24MBIPC12001- Genetic Engineering

(Biotechnology)

|          | (Biotechnology)                                                                                                                                                           |          |                                    |                 |  |  |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------|-----------------|--|--|
| Time     | Time: 3 hrs                                                                                                                                                               |          | Maximum: 60 Marks                  |                 |  |  |
|          | Answer ALL questions                                                                                                                                                      |          |                                    |                 |  |  |
| D.       | (The figures in the right hand margin indicate marks)                                                                                                                     | (2 = 5 - | 10 Ma                              | wlra)           |  |  |
| PART – A |                                                                                                                                                                           |          | $(2 \times 5 = 10 \text{ Marks})$  |                 |  |  |
| Q.1.     | Answer ALL questions                                                                                                                                                      |          | CO#                                | Blooms<br>Level |  |  |
| a.       | What are phagemids?                                                                                                                                                       |          | CO2                                | K1              |  |  |
| b.       | Justify the use of Klenow fragment in genetic engineering.                                                                                                                |          | CO3                                | K5              |  |  |
| c.       | What is the role of primer in PCR?                                                                                                                                        |          | CO1                                | K1              |  |  |
| d.       | What is CRISPR?                                                                                                                                                           |          | CO2                                | K3              |  |  |
| e.       | What are the applications of DNA microarrays?                                                                                                                             |          | CO1                                | K2              |  |  |
| PART – B |                                                                                                                                                                           |          | $(10 \times 5 = 50 \text{ Marks})$ |                 |  |  |
| Ansv     | ver ALL the questions                                                                                                                                                     | Marks    | CO#                                | Blooms<br>Level |  |  |
| 2. a.    | Compare and contrast between Far western and Southwestern blotting.                                                                                                       | 7        | CO2                                | K4              |  |  |
| b.       | Briefly discuss the different types of radioactive and non-radioactive probes.                                                                                            | 3        | CO1                                | K2              |  |  |
|          | (OR)                                                                                                                                                                      |          |                                    |                 |  |  |
| c.       | With the help of flow chart and suitable diagram illustrate the process of Southern blotting.                                                                             | 5        | CO2                                | K2              |  |  |
| d.       | Explain the working mechanism of fluorescence <i>in situ</i> hybridization (FISH). Add a note on the types of FISH.                                                       | 5        | CO2                                | K2              |  |  |
| 3.a.     | Briefly discuss M13 vectors and their application?                                                                                                                        | 5        | CO1                                | K2              |  |  |
| b.       | Between GST-vector and pET vector, which one would to choose for purification of your protein of interest and why?                                                        | 5        | CO3                                | K5              |  |  |
|          | (OR)                                                                                                                                                                      | _        | 000                                | ***             |  |  |
| c.       | Imagine you are a researcher aiming to clone and express a large mammalian gene encoding protein 'X'. Design a Yeast Artificial Chromosome (YAC) vector for this purpose. |          | CO3                                | K6              |  |  |
| d.       |                                                                                                                                                                           | 5        | CO2                                | K2              |  |  |
| 4.a.     | With the help of suitable diagrams, illustrate the working of Nested PCR.                                                                                                 | 5        | CO3                                | K3              |  |  |
| b.       | Compare and contrast between enzymatic and chemical sequencing of DNA.  (OR)                                                                                              | 5        | CO2                                | K4              |  |  |
| c.       | Briefly discuss the process of chemical synthesis of oligonucleotides.                                                                                                    | 5        | CO1                                | K2              |  |  |
| d.       | With the help of a flow chart, illustrate megaprimer method of site-directed mutagenesis.                                                                                 | 1 5      | CO3                                | K3              |  |  |
| 5.a.     |                                                                                                                                                                           | 5        | CO2                                | K2              |  |  |
| b.       | You are a researcher who wants to identify whether the protein 'X' interacts with the                                                                                     | 5        | CO3                                | K6              |  |  |
|          | DNA. Design an experiment to identify this protein-DNA interaction.  (OR)                                                                                                 |          |                                    |                 |  |  |
| c.       | •                                                                                                                                                                         | 5        | CO1                                | K4              |  |  |
| d.       | Illustrate the process of c-DNA library preparation with the help of suitable flow chart                                                                                  | 5        | CO2                                | K3              |  |  |

or diagram. 6.a. Explain the process of creating knock-out mice model and justify its use in genetic 5 CO3 K4 engineering. With the help of suitable diagram explain the working of siRNA-based gene silencing. 5 b. CO3 K2 (OR) What are the different methods of genetic manipulation used in *Drosophila* model? 5 CO1 K3 Why the introduction of GM crops in market debated? 5 CO3 K4 --- End of Paper ---