QP Code: R252G027	Reg.					
	NT.					

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET UNIVERSITY)

AY 24

M.Sc. (Second Semester - Regular) Examinations, July - 2025

${\bf 24MPCMA12001-Abstract\ Algebra}$

(Mathematics)

	(Mathematics)				
Time: 3 hrs			Maximum: 60 Marks		
	Answer ALL questions				
n	(The figures in the right hand margin indicate marks)	(2 5	10 1/1	1	
PART – A		$(2 \times 5 = 10 \text{ Marks})$			
Q.1.	Answer ALL questions		CO#	Blooms Level	
a.	What is Commutative group. Provide an example of Commutative group.		CO1	K1	
b.	Differentiate between group homomorphism and isomorphism.		CO2	K1	
c.	Let <i>G</i> be the group of integers under addition. A mapping $\phi: G \to G$ is defined by cx for all $x \in G$, $c \in Z$. Then show that ϕ is a homomorphism.	$\phi(x) =$	CO3	K2	
d.	Define Eisenstein's Criterion and give an example.		CO4	K2	
e.	What do you mean by extension field? Justify your answer with an example.		CO5	К2	
PART – B		$(10 \times 5 =$	50 Ma	arks)	
Ansv	wer ALL the questions	Marks	CO#	Blooms Level	
2. a	State and Prove Lagrange's Theorem.	7	CO1	K2	
b	Is the set of integers is a cyclic group w.r.t addition? If yes then find its generator.	3	CO1	K2	
	(OR)				
c	N is a normal subgroup of G if and only if $gNg^{-1} = N$ for every $g \in G$.	7	CO1	K2	
d	Define Euler's ϕ function. Find $\phi(10)$.	3	CO1	K2	
3.a	Show that if every element of the group G is its own inverse, then G is abelian.	6	CO2	K2	
b	If every $x \in R$ satisfies $x^2 = x$. Prove that R must be commutative. (OR)	4	CO1	K2	
c	· · · · · · · · · · · · · · · · · · ·				
	subgroup of \bar{G} . $N = \{x \in G \phi(x) \in \bar{N}\}$. Then $\frac{G}{N} \approx \frac{\bar{G}}{N}$.	10	CO2	K2	
4.a	Show that the commutative Ring D is an integral domain iff for $a, b, c \in D$ with $a \neq 0$, the relation $ab = ac$ implies that $b = c$.	h 5	CO3	K2	
b		5	CO3	K2	
	(OR)				
C	If U is an ideal of a ring R, then $\frac{R}{U}$ is a ring and is a homomorphic image of R.	10	CO3	K2	
5.a		h 5	CO4	К3	
b	$a \neq 0$, the relation $ab = ac$ implies that $b = c$. If R is a ring, then for all $a, b \in R$ show that, $(-1)a = -a$.	_	COS	V1	
U.	(OR)	5	CO3	K1	
c	Show that $F[x]$ is an Euclidean ring.	6	CO4	K2	
d	The homomorphism ϕ of R into R' is an isomorphism iff $I(\phi) = (0)$.	4	CO3	К3	

6.a.	a. Minimal polynomial of any element is irreducible of F .		CO5	K1
b.	b. If $P(x) \in F[x]$ be a minimal polynomial of α and $f(x) \in F[x]$ be any other polynomial such that $f(\alpha) = 0$, then $P(x) f(x)$.		CO5	К3
	(OR)			
c.	c. Minimal polynomial of an element is unique.		CO5	K1
d.	d. Every finite extension is an algebraic extension.		CO5	К3
	End of Paper			