QP Code: R252B070	Reg. No											AY 24
-------------------	------------	--	--	--	--	--	--	--	--	--	--	-------

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

PART - A

b

С

d

and real testbeds.

performance in ns-3.

WSN experiments.

M.Tech. (Second Semester) Regular Examinations, July - 2025 24MECPE12001/24MVLPE12001 - Wireless Sensor Networks (ECE/ECE-VLSI)

 $(2 \times 5 = 10 \text{ Marks})$

5

5

CO₃

CO3

K4

K4

CO#

Blooms

Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

Q.1. Answer **ALL** questions Level Define sensor network architecture and provide an overview of its applications. CO₁ K2 What are the key differences between sensor networks and Ad Hoc Networks? CO₁ **K**3 b. What is the significance of MANTIS in sensor network software? CO₂ K2 c. Give an example of a sensor node platform known for its energy efficiency. CO₂ K2 d. What are the primary programming tools used for developing applications in wireless CO3 **K**3 e. sensor networks? PART - B $(10 \times 5 = 50 \text{ Marks})$ Marks CO# Blooms Answer **ALL** the questions Level CO₁ 2.a Describe various sensors, microcontrollers, and communication modules used in 5 **K**3 sensor nodes. Explain software layers in sensor nodes: OS, middleware, and application 5 CO₁ K2 b software. (OR) Explain the functions of sensing, processing, and communication components in 5 CO₁ K2 С a sensor node. Describe factors influencing the selection of hardware for energy-efficient WSN 5 CO₁ **K**3 d platforms. Compare features of sensor node platforms: mica2, telosB, Imote2, and Sun 5 CO₂ **K**3 3.a SPOT. Discuss the role of TinyOS, Contiki, and RetOS in WSN operating systems. 5 CO₂ K4 b Describe the importance of modular design in WSN platforms using specific 5 CO₂ **K**3 С examples. Explain energy-saving techniques integrated into WSN platforms like Imote2 and d 5 CO₂ **K**3 telosB. 5 CO₃ K5 Analyze the benefits and limitations of open-source WSN simulators like ns-2 4.a compared to QualNet. Investigate procedures for comparing performance between WSN simulations 5 CO3 K3

(OR)

Describe simulation setup and performance metrics for evaluating WSN

Discuss challenges faced while validating simulation results with real-world

5.a	Explain wireless communication technologies such as Bluetooth and UWB for sensor networks.	5	CO4	K3
b	Compare multi-hop and cluster-based routing in WSNs.	5	CO4	K4
	(OR)			
С	Discuss the design and implementation of node discovery protocols with examples.	5	CO4	K3
d	Evaluate fault-tolerant techniques and their impact on WSN reliability.	5	CO4	K4
6.a	Compare WSN architecture with Ad Hoc Networks, highlighting communication and energy use.	5	CO2	K5
b	Explore MICA2 hardware and TinyOS software in WSN node architecture. (OR)	5	CO2	K3
С	Explain key constraints in WSN design: memory, bandwidth, energy, and processing power.	5	CO2	K4
d	Describe how protocol stack design supports scalability and power efficiency in WSNs.	5	CO2	K4

--- End of Paper ---