Reg.						AY 24
No						

 $(2 \times 5 = 10 \text{ Marks})$

CO4

К3

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

PART - A

e.

Define digital signal processors (DSPs).

QP Code: R252B060

M.Tech. (Second Semester) Regular Examinations, July - 2025

24MVLPC12002 - VLSI Signal Processing

(ECE-VLSI)

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

CO# Blooms Q.1. Answer ALL questions Level Define iteration bound. CO2 Κ2 Explain retiming and unfolding in VLSI signal processing. b. CO1 K2 Enumerate four uses of parallel processing. CO3 Κ2 c. Explain the advantage of lattice filter structure. d. CO3 K2

 $PART - B ag{10 x 5} = 50 Marks$

	(
Answer ALL the questions	Marks	CO#	Blooms Level
2.a Discuss the challenges associated with implementing parallelism in VLSI signal processing systems.	al 5	CO1	К3
2.b Explain pipelining and parallel processing in VLSI and compare them wit suitable examples.	h 5	CO1	K2
(OR)			
2.c Write a short note on instruction-level parallelism and its limitations in VLS signal processing.	SI 5	CO1	К3
2.d Differentiate between static and dynamic pipelining with examples from signal processor designs.	al 5	CO1	К2
3.a Explore the role of parallel processing in real-time VLSI systems with an exampluse case.	le 5	CO2	К3
3.b Differentiate between retiming and unfolding in VLSI signal processing an explain their effects on speed.	d 5	CO2	К4
(OR)			
3.c Discuss loop unrolling as a throughput enhancement technique in VLSI design.	5	CO2	K4
3.d Describe how clock domain crossing is handled in pipelined VLSI signal processing systems.	al 5	CO2	К3
4.a List and explain five real-world applications of VLSI signal processing.	5	CO3	K5
4.b Discuss the advantages and limitations of pipelining and parallelism in high performance DSP systems.	ı- 5	CO3	К3
(OR)			
4.c Explain the concept of hardware-software co-design in VLSI signal processin applications.	g 5	CO3	K4
4.d Describe the design trade-offs in fixed-point vs floating-point architecture for VLSI DSP.	or 5	CO3	К4
5.a Contrast adaptive filters and recursive filters with examples from VLS implementations.	SI 5	CO4	К3

5.b	Explain the concept and design impact of redundant architecture in low-latency systems.	5	CO4	K4
	(OR)			
5.c	Discuss the design challenges of implementing fault-tolerant VLSI DSP systems.	5	CO4	К3
5.d	Explain how bit-serial and bit-parallel architectures differ in terms of area and speed.	5	CO4	K4
6.a	Elaborate on the lattice filter structure with a focus on modular VLSI design.	5	CO2	K5
6.b	Explain the concepts of data parallelism and task parallelism in parallel DSP VLSI architectures.	5	CO2	К3
6.c	Explain the concept of asynchronous pipelining and its significance in power-sensitive VLSI systems.	5	CO2	K4
6.d	Describe how systolic arrays are used in VLSI DSP and mention their advantages. End of Paper	5	CO1	K2