	_						
QP Code: R252B050	Reg.						AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.Tech. (Second Semester) Regular Examinations, July – 2025

MPCEC2010 - System on Programmable Chip Design (ECE-VLSI)

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

P	ART – A	$(2 \times 5 =$	$(2 \times 5 = 10 \text{ Marks})$			
Q.1. Answer <i>ALL</i> questions			CO#	Blooms Level		
a.	Explain the basic bus architecture in SoC.		CO1	K2		
b.	Define IP in VLSI.		CO1	K1		
c.	List the 4 layers of application architecture.		CO2	K2		
e.	Discuss peripheral interface and its relevance to SoC testing.		CO3	K2		
f.	Differentiate between PCIe and AMBA.		CO4	K2		
PART – B			$10 \times 5 = 50 \text{ Marks}$			
Ans	wer ALL the questions	Marks	CO#	Blooms Level		
2.a	Explain the working and purpose of IEEE P1500 standard in SoC testability.	5	CO1	К3		
b	Describe the concept of pipelining and its impact on instruction execution. (OR)	5	CO1	K2		
С	Illustrate the use of scan chains and boundary scan for chip-level testing.	5	CO1	К3		
d	Discuss Built-In Self-Test (BIST) techniques and their advantages in VLS testing.	I 5	CO1	K4		
3.a	Differentiate between NoC and SoC with relevant architectural features.	5	CO2	К3		
b	Explain routing algorithms used in packet-switched NoC systems. (OR)	5	CO2	K4		
С	Describe the role of memory hierarchy and cache coherence in multiprocessor SoC.	r 5	CO2	K4		
d	Analyze clock domain crossing issues and mitigation strategies in synchronous SoC design.	s 5	CO2	K4		
4.a	Describe instruction set architecture (ISA) and its influence on processor design.	. 5	CO3	K5		
b	Explain the role of AMBA protocols in SoC design and integration. (OR)	5	CO3	К3		
С	Evaluate the importance of hardware/software co-design in embedded systems.	5	CO3	4.c		
d	Discuss the types and use cases of on-chip interconnect topologies.	5	CO3	4.d		
5.a	Explain the IP life cycle management process in SoC-based development.	5	CO4	5.a		
b	Discuss various low-power design techniques used in advanced SoC development.	5	CO4	5.b		
	(OR)					
С	Analyze the impact of thermal management and heat dissipation in SoC packaging.	5	CO4	K4		
d	Describe the architecture and functions of a real-time operating system (RTOS)	5	CO4	К3		

in embedded SoCs.

6.a	Describe the purpose and functioning of cache memory in enhancing SoC	5	CO2	K5
	processor performance.			
b	Explain the role of memory interleaving in reducing latency and improving	5	CO2	К3
	bandwidth.			
	(OR)			
С	Discuss various types of SoC memory technologies and their comparative	5	CO2	K4
	benefits.			
d	Analyze the impact of pipeline hazards and solutions to overcome them.	5	CO2	K4
	End of Paper			