QP Code: R252B065	Reg.						AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.Tech. (Second Semester) Regular Examinations, July - 2025

24MSEPC12002 - Structural Dynamics

(Structural Engineering)

Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

PART - A $(2 \times 5 = 10 \text{ Marks})$

Q.1. Answer <i>ALL</i> questions a. Define Degree of Freedom.	Blooms
a. Define Degree of Freedom.	Level
ϵ	K2
b. Differentiate free and forced vibration.	K2
c. Define stiffness matrix.	K2
d. List the approximate methods used to find the mode shapes and frequencies.	K2
e. Classify the general differential equation of a beam subjected to external vibration CO5	K2

PART - B $(10 \times 5 = 50 \text{ Marks})$

Answer ALL the questions

CO# Level CO₁ K2 10

Rlooms

Marks

2. a. An SDOF system consists of a mass of 20kg, and a spring of stiffness 2200kN/m and dashpot with a damping coefficient of 60Ns/m and is subjected to a force of $F = 200\sin 5t$. Find its steady state response and peak amplitude. Find the maximum bending moment and shear force in the column if the column is infinitely rigid.

(OR)

- b. A machine of mass one tonne is acted upon by an external force of 2450 N at a frequency of 1500 rpm. To reduce the effects of vibration, isolator of rubber having a static deflection of 2mm under the machine load and an estimated damping factor = 0.2 are used. Determine
- CO₁ **K**3 10

- 1. The force transmitted to the foundation
- 2. The amplitude of vibration of the machine
- A vibrating system consisting of a weight of 1000kN and a spring stiffness of 80kN/m is viscously damped so that the ratio of two consecutives amplitude is 1 to 0.85. Determine:

CO₂ K2 10

- (i) Natural frequency
- (ii) Damping ratio

(OR)

- b. Explain in detail about the free and forced vibration of two degree of freedom 10 CO₂ K2 systems.
- CO3 **K**3 The Stiffness and mass matrices of a vibrating system is given below. 10 4.a. Determine its fundamental frequency and Mode shapes.

$$[M] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2.5 \end{bmatrix}$$
$$[K] = \begin{bmatrix} 600 & -600 & 0 \\ -600 & 1800 & -1200 \\ 0 & -1200 & 3000 \end{bmatrix}$$

(OR)

b.	Determine the mode shapes and nodal frequencies of a three storey building by	10	CO3	K3
	modal super position method. The storey masses are M ₁ =360 kg, M ₂ =250kg,			
	M_3 = 150kg and storey stiffness are K_1 = 3000kN/m, K_2 = 2000kN/m and			
	$K_3=1000kN/m$.			
5.a.	Construct the step by step procedure involved in the mode superposition	10	CO4	K3
	technique for a 3 DOF system.			
	(OR)			
b.	Derive the equation of motion for flexural beam subjected to forced vibration	10	CO4	K2
6.a.	Express in detail the equation of motion by Virtual work method.	5	CO5	K2
b.	Formulate the equation of motion by conservation of energy method.	5	CO5	K2
	(OR)			
c.	Determine the first two natural frequencies of uniform cantilever beam by	10	CO5	K2
	Rayleigh – Ritz method. Assume			
	$\varphi(x) = C_1 x^2 + C_2 x^3$			
	1 () -1/1 -2/1			

--- End of Paper ---