Reg.						AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

Q.1. Answer ALL questions

QP Code: R252B053

M. Tech.(Second Semester) Examinations, July - 2025

24MPEPC12001 - POWER ELECTRONIC CONVERTERS

(Power Electronics)

Maximum: 60 Marks

CO#

Blooms

Level

Answer ALL questions (The figures in the right hand margin indicate marks)

PART - A (2 x 5 = 10 Marks)

а	What is the role of continuous gating signals in ensuring proper operation of power electronic devices?					
b	Identify common real-world uses of AC voltage controllers in industrial and domestic settings.					
С	11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1					
d	d How do you calculate the peak-to-peak voltage if the signal has a maximum of 1 V and a minimum of -1 V?					
e Define input power factor in controlled rectifier circuits and explain its significance.						
$PART - B ag{10 x 5} =$						
Ans	wer ALL the questions	Marks	CO#	Blooms Level		
2.a	Calculate the chopping frequency of a step-up chopper with 150V input and 450V output, if the thyristor conducts for $150\mu s$.	5	CO3	K4		
2.b	Describe the principle and application of a resonant converter in high-frequency power conversion systems.	5	CO2	K3		
_	(OR)	_	901	***		
2.c	Explain the working of a single-phase AC voltage controller connected to a purely resistive load with waveform illustrations.	5	CO1	K3		
2.d	List real-world applications of cyclo-converters and explain how they help in variable frequency control.	5	CO2	K2		
3.a	Analyze the use of Space Vector PWM (SVPWM) in inverters and compare its advantages with sinusoidal PWM.	5	CO3	K3		
3.b	Describe the operation of a dual converter used in reversible DC motor drives and explain the control technique.	5	CO4	K3		
	(OR)					
3.c	Derive the expression for RMS output voltage in a full-wave rectifier with resistive load and discuss its waveform.	5	CO1	K4		
3.d	Suggest suitable snubber circuits for protecting power devices and explain their working.	5	CO2	K3		
4.a	Illustrate the working of a boost converter with waveforms and explain the conditions for continuous conduction mode.	5	CO1	К3		
4.b	Explain how three-phase fully controlled bridge rectifiers behave under inductive load conditions with waveform support. (OR)	5	CO2	K4		
4.c	Describe the differences between current source inverters and voltage source inverters with their advantages and applications.	5	CO4	K3		

4.d	Compare the performance of buck, boost, and buck-boost converters in terms of	5	CO3	K4
	efficiency, voltage gain, and duty cycle.			
5.a	Analyze the working of a Cuk converter and provide waveforms for voltage and	5	CO3	K4
	current in continuous mode.			
5.b	Explain the concept of soft switching and its importance in reducing losses in	5	CO1	K3
	high-frequency converters.			
	(OR)			
5.c	Derive the expression for average output voltage of a three-phase half-controlled	5	CO4	K4
	converter feeding a resistive load.			
5.d	Discuss the role of isolation transformers in power electronic circuits and how	5	CO2	K3
	they ensure safety and functionality.			
6.a	Highlight the advantages of using 180-degree conduction mode over 120-degree	5	CO1	K2
	mode in three-phase inverters.			
6.b	Describe the function of a phase-shifted full-bridge converter and how it achieves	5	CO4	K4
	ZVS operation.			
	(OR)			
6.c	Define the term "input power factor" in rectifiers and describe methods for its	5	CO3	K2
	improvement in industrial systems.			
6.d	What criteria must be considered when selecting semiconductor devices (SCRs,	5	CO1	K3
	MOSFETs, IGBTs) for specific converter applications?			

--- End of Paper ---