QP Code: R252B083	Reg						$\Lambda \mathbf{V}'$
QP Code: R232b083	Reg.						Λ 1
	N.T						

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.Tech. (Second Semester) Regular Examinations, July – 2025

24MMTPE12001 – MANUFACTURING MANAGEMENT

(Manufacturing Technology)

Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

PA	ART - A	(====== g =====		e	,		- 		,	$(2 \times 5 =$	= 10 Ma	rks)
Q.1. A	Answer ALL o	questions									CO#	Blooms Level
a. Discuss the role of operations strategy in manufacturing?										CO1	K2	
b. State the importance of forecasting error calculation and types.										CO2	K1	
c. 4	Analyze the im	pact of inadequate safe	ety st	ock o	n produ	action	schedu	ıling			CO4	K4
d.	Analyze the rol	e of the Bill of Materi	als (B	OM)	in dete	erminir	g the	accura	cy of MRP ou	tputs	CO5	K4
e.	Write a short no	ote on continuous imp	roven	nent u	nder J	IT.					CO6	K1
PA	RT – B									(10 x 5	= 50 Ma	arks)
Answ	er ALL the qu	<u>iestions</u>								Marks	CO#	Bloom s Level
2. a.	Explain diffe	erent qualitative tech	niqu	es in	foreca	sting.				5	CO2	K2
b.	A shop has weeks as sho	recorded the demands ow below.	nd fo	or a p	oarticu	lar pr	oduct	durin	g the past 6			
		Weeks	1	2	3	4	5	6]			
		Demand in units	19	17	22	27		33		5	CO2	K3
		Demand in units	19	1/	22	21	29	33				
		three week weighte										
		0.6 for most recent	data	and	weigh	nted o	f 0.3	and 0	1 successive			
	older data in	week 7.										
	TO: 4	1 66	(OR	′						_	901	***
c.		ole of forecasting in pr		_	-	g and c	ontrol	•		5	CO1	K2
	d. Explain the term "capability" in operational strategy.						5	CO1	K2			
3.a.							5	CO3	K2			
b.	what is capac	city planning? why is	_		t in rac	miy a	esign?			5	CO3	K1
	Docion o lovo	out for an assembly lin	(OR	,	a alaati	io cor				10	CO2	V.
c.	-	pe and Q-type inver	_	-	-	ic car.				5	CO3 CO4	K6 K2
4.a. b.		stries estimate that t	•	•		ca 12	000 11	nite o	f product for		CO4	K2
υ.		ning year. The order	-	_					_			
		t per year is 20% of	_			-					CO4	K3
	=	0, Determine a) eco	_		_	_					CO+	113
	year.	o, Betermine a) ees	1101111	010	or que	,	<i>o)</i>		or orders per			
	J		(OR	\mathcal{C}								
c.	Analyze trade	e-offs between orderin	`	′	holding	g cost.				5	CO4	K4
d.	•	tical inventory control	_		`	-				5	CO4	K2
	-	•										

- 5.a. Describe the evolution of MRP and its significance in modern manufacturing. 5 CO₅ K5
 - What are the data input requirements of MRP systems? b.

5 CO₅ K5

(OR)

c. Consider the manufacture of a toy. The MPS to manufacture the toy is given in the following table.

Week	1	2	3	4	5	6	7	8
Demand	200	-	100	175	300	200		250

The bill of materials structure is given in the following figure.

10 CO₅ **K**3

The details of bill of materials along with economic order quantity and stock on hand for the final product and subassemblies are shown in the following table.

Part required	Order	No. of units	Lead time	Stock on
	quantity		(week)	hand
A	350	1	2	200
В	450	1	1	400
С	400	1	1	375

Complete the material requirement plan for the main product A as well as for the subassemblies B and C.

- 5 6.a. Compare level plan and chase plan based on their features for the preparation CO₆ K4 pf aggregate planning.
 - 5 b. Demonstrate the steps which are followed in Kanban system. CO₆ **K**3

Discuss the objectives and benefits of JIT systems.

5 CO₆ K2

Outline the importance of pure strategy and mixed strategy.

CO₆

K3

5

--- End of Paper ---