	-					
OP Code: R252B082	Dog					
QP Code: R252B082	Reg.					

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.Tech. (Second Semester) Regular Examinations, July - 2025

24MMDPE12002-Instrumentation and Automatic Control System (Machine Design)

AY 24

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

 $PART - A (2 \times 5 = 10 \text{ Marks})$

Q.1. Answer <i>ALL</i> questions			Blooms Level
a.	State the purpose of control system?	CO1	K 1
b.	Define the term transfer function	CO2	K1
c.	Describe what do you mean by Root Contours.	CO3	K2
d.	Define state of a system and state variable	CO4	K 1
e.	Sketch the constant gain loci for the unity feedback system whose feed forward transfer	CO3	K3
	function is $G(s) = \frac{K}{S(s+1)}$		

 $PART - B ag{10 x 5} = 50 Marks$

Answer ALL the questions			CO#	Blooms Level
2. a.	Explain the design of state observer	5	CO1	K1
b.	. Illustrate and explain pole placement by state feedback			K1
	(OR)			
c.	Explain Routh-Hurwitz's Stability Criterion. Mention its advantages and	6	CO3	K2
	disadvantages.			
d.	Sketch block diagram for pollution control in automobile engine	4	CO1	K3
3.a.	Given the open loop frequency response $G(j\omega) = U + jV$;	7	CO3	K2
	Obtain the radii and center locations of constant M and N circles			
b.	Define minimum phase, non-minimum phase and All pass system.	3	CO3	K1
	(OR)			
c.	A feedback system has a closed loop transfer function	10	CO4	K6
	$Y(s) \qquad 10s + 40$			
	$\frac{R(s)}{R(s)} = \frac{1}{s^3 + s^2 + 3s}$			

Construct a state space representation of the system

4.a. Sketch the Bode Plot of the open loop transfer function of a feedback system 10 CO3 K3 given by

$$\frac{G(s)}{H(s)} = \frac{10(s+3)}{s(s+2)(s^2+s+2)}$$

Also determine the system Stability.

(OR)

c. Evaluate the stability of the following system given by 10 CO3 K3 $G(s) = \frac{K}{s(s+1)}$ and H(s) = 1 using Routh-Hurwitz's Stability Criterion.

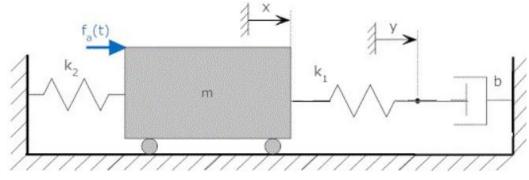
- Define state of a system, state variable, state space and state variable.
- 5 CO4 K1 5

Enlist the properties of state transition matrix. b.

(OR)

A unity feedback system has open loop transfer function

$$G(s) = \frac{(s+2)}{(s+1)(s-1)}$$


Use Nyquist criterion to determine if the system is stable in the closed loop configuration.

6.a. Evaluate the transfer function of the system with state space representation

$$\dot{q} = Aq + Bu = \begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ -4 & -3 & -2 \end{bmatrix} q + \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} u$$

$$y = Cq + Du = \begin{bmatrix} 4 & 2 & 0 \end{bmatrix} q + 0.u$$
(OR)

c. Construct a state space model for the system shown. The input is fa and the 10 CO4 K6 output is y.

--- End of Paper