QP Code: R252B066 Reg.						AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.Tech. (Second Semester) Regular Examinations, July - 2025

24MBTPE12001- Applied Bioinformatics

(Biotechnology)

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

PART – A	$(2 \times 5 = 10 \text{ Marks})$			
Q.1. Answer <i>ALL</i> questions		CO#	Blooms Level	
a. Define Flat File, File and Field.		CO1	K1	
b. Write the difference between global sequence alignment and local sequence align	ment	CO1	K1	
c. What are the menus of graphic window of Rasmol? Write its use		CO1	K2	
d. Find the no of valid shift of the Text sequence 1011101110 and pattern 111.		CO1	K2	
e. How protein folding is estimated?		CO1	K1	
PART – B	$(10 \times 5 = 50 \text{ Marks})$			
Answer ALL the questions	Marks	CO#	Blooms	
2. a. Discuss the storing and retrieving method of EMBL database.	5	CO1	Level K1	
b. Explain the menu and submenu of PDB database.	5	CO1	K1	
(OR)		CO1	K1	
c. Write short note of CATH and SCOP database.	5	CO1	K1	
d. Based on data type, Explain different layer of PIR database.	5	CO1	K1	
3.a. Find the optimal alignment and alignment score between two sequence	e 5	CO2	К2	
CCATACGA and CAGCTAGCG by using Dot matrix algorithm.	J	COZ	NΖ	
b. Convert the given molecular marker to MSA and justify it.				
TCYGIFVL				
TCGIFVL	5	CO2	K2	
SCYGIFVLSG				
TCFGIFVL				
ACGIFVLSG (OR)				
c. Find the optimal alignment and alignment score between two sequence	۵			
GGATCGA and GAATTCAGTTA (Assumeing match = 5, Mismatch = -3 and		CO2	К2	
gap = -4) bu using smith-Waterman algorithm.	u 5	COZ	112	
d. Make a PAM matrix of all amino acid of the given MSA.				
ACGCTAFKI				
GCGCTAFKI				
ACGCTAFKL	-	603	и2	
GCGCTGFKI	5	CO2	K2	
GCGCTLFKI				
ASGCTAFKL				
ACACTAFKL				

4.a.	there are 5000 amino acids in helical conformation of which 500 are serine.									CO3	K2
	Calculate the typ										
b.	Design a HMM o	of the gi	iven MS	SA.							
	VGAH										
	V N										
	VEA D								5	CO3	K1
	VKG										
	VYST										
	FNA N										
	IAGADN			(OR)							
c.	Find the BLOSUM value of all amino acid of the given block.										
	AAI										
	SAL								_	602	K2
	TAL								5	CO3	K2
	TAV										
	AAL										
d.	Design a phyloge	enetic tr	ree.	_	1	,		7			
			A	В	С	D	Е				
		A		94	111	180	206	_			
		В			115	194	218		5	CO3	K2
		C				188	218				
		D					217				
		E									
5.a.	Using Euclidean distance method, Justify the MSA.										
	ADIKLAAIKL									CO4	К2
	ADSKLAAIKA									CO4	NΖ
	KILASDPQWE										
b.	Find the no. of valid shift of the given Test sequence- 31415926535 and patten								5	CO4	K2
	sequence 26 using Rabin Krap algorithm (OR)										
C	What is nattern?	Find the	no of v	` ′	ft of the	given T	est seam	ence 1011101110			
c.	What is pattern? Find the no. of valid shift of the given Test sequence 1011101110 and patten sequence 111 using Naïve string-matching algorithm.								5	CO4	K2
d.	Define Block and print. Find the blosum value of all amino acid of the given										
u.	block.										
	AAI										
	SAL								5	CO4	K2
	TAL										
	TAV										
	AAL										
6.a.	. Explain AMBER process programs.									CO5	K1
b.	Explain the type of protein – ligand interaction.							5	CO5	K1	
				(OR)							
c.	How do you predict the 3D structure of proteins by threading modelling.									CO5	K1
d.	Explain steps inv	olve in	the Dru	g design	1.				5	CO5	K1
					- End of	f Paper					