D					
Reg.					
8.					
No					

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

PART - A

bioreactors.

QP Code: R252B067

M.Tech. (Second Semester) Regular Examinations, July - 2025

AY 24

 $(2 \times 5 = 10 \text{ Marks})$

24MCHPE12001 - Bioprocess Engineering

(Chemical Engineering)

me: 3 hrs

Maximum: 60 Marks

Answer ALL questions

Answer ALL questions (The figures in the right hand margin indicate marks)

CO# Blooms Q.1. Answer **ALL** questions Level a. What is a fed-batch culture? How is it different from batch culture in terms of biomass CO₂ **K**1 and product formation? b. Sketch a simple diagram of a bubble column reactor and label its main components? CO₃ **K**1 c. Define microbial oxygen demand. Why is it important in understanding microbial growth CO₃ K2 in a system? How does temperature affect the K_La value in a bioreactor? CO₄ **K**1 List and briefly describe any four methods used for immobilizing enzymes or cells. **K**3 CO₄ PART - B $(10 \times 5 = 50 \text{ Marks})$ Marks CO# Blooms Answer **ALL** the questions Level 5 2. a. Define standard free energy of formation in the context of biochemical CO₁ **K**1 reactions. Explain how the formation free energies of reactants and products determine the overall free energy change of a biological reaction. 5 b. Examine the thermodynamics of biological reactions where variation of CO₂ K2 reaction free energies for different electron donors and acceptors takes place (OR) Analyze the major Electron-Donor Half-Reactions of Glucose. 5 **K**1 CO₁ 5 K2 Aerobic oxidation of glucose is accompanied by microbial growth. NH4+ is CO₂ used as the nitrogen source and the end products are CO2 and H2O. The formula for bacterial cell is C₅H₇NO₂. Determine the coefficients for this microbial conversion. Assume that 40% of total electrons are used for biosynthesis and 60% are used for energy generation. Apply the Leudeking-Piret model to calculate product formation in a 5 CO₂ K2 fermentation process when given biomass growth data and carbon source concentration. 5 b. Explain how product synthesis is linked to cell growth and energy metabolism **K**1 CO₂ in growth-associated and non-growth-associated kinetics. (OR) c. Compare and contrast the physiological and metabolic changes that occur 5 K2 CO₂ during the different phases of microbial growth. 5 d. Formulate the Methods for Measurement of Cell Biomass and Cell Numbers **K**3 CO₃ for unicellular organisms. K2 4.a. Describe the flow patterns generated by radial and axial flow impellers in CO3

b.	Describe few Significant things of concern that should be taken into account	5	CO4	K3
	while designing a fermenter.			
	(OR)			
c.	Justify the major advantages of the spiral heat exchanger.	5	CO3	K1
d.	Illustrate the design aspect of continuous sterilization processes a time period	5	CO4	K2
	during which the medium is heated to the sterilization temperature, a holding			
	time at the desired temperature, and a cooling period to restore the medium to			
	the fermentation temperature.			
5.a.	Calculate biomass and product yield coefficients using given experimental data for substrate consumption and product formation.	5	CO2	K1
b.	Explain the resistance involved in transport of oxygen from a bubble to	5	CO3	K2
	biochemical reaction site. Explain clearly the assumptions made and explain			
	the importance of oxygen mass transfer determination for aerobic fermentation			
	with suitable examples.			
	(OR)			
c.	Describe in detail the analysis of film and pore diffusion effects in enzyme	5	CO2	K 1
	immobilized in porous matrix.			
d.	How will you design the fluidized bed reactor for immobilized enzyme	5	CO4	К3
	reaction?			
6.a.	Examine the thermodynamics of biological reactions where variation of	4	CO4	K1
	reaction free energies for different electron donors and acceptors takes place			
b.	Calculate the Free-energy changes in bio reactions are calculated by using the	6	CO2	K2
	formation free energies of products and reactants.			
	(OR)			
c.	Illustrate the role of bioprocess engineering in the production of bio fuels.	4	CO3	K1
d.	Describe how bioprocess engineering contributes to environmental protection.	6	CO4	K2
	End of Paper			