OP Code: R252B046	Pag						AV 2/
Qr Coue. K232B040	Reg.						A1 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

PART - A

M.Tech. (Second Semester) Regular Examinations, July - 2025

24MCHPC12001- Advanced Transport Phenomena

(Chemical Engineering)

 $(2 \times 5 = 10 \text{ Marks})$

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

	· ·			
Q.1.	Answer ALL questions		CO#	Blooms Level
a.	What is the physical significance of the pressure drop in a packed bed system?		CO2	K2
b.	What is meant by non-Newtonian viscosity? Give one example.		CO1	K2
c.	Mention any two practical applications of power-law fluid behaviour.		CO1	K1
d.	Define heat transfer coefficient and explain its physical significance.		CO1	K1
e.	Define macroscopic energy balance for a non-isothermal system.		CO2	K1
PA	ART - B (1	10 x 5 =	50 Ma	arks)
Ansv	wer ALL the questions	Marks	CO#	Blooms Level
2. a	Describe the development of the velocity profile in fully developed laminar flow in a pipe.	5	CO3	К3
b		5	CO1	К3
	(OR)			
c	laminar flow in a circular pipe and obtain the corresponding friction factor	5	CO3	К3
4	expression.	_	CO4	IZ 4
d	is analogous to heat and mass transfer.	5	CO4	K4
3.a	Explain how viscosity varies in Newtonian and non-Newtonian fluids. How do generalized Newtonian models describe this behavior?	5	CO1	K4
b	Discuss how viscous losses affect energy consumption in pipeline flow systems. Relate this to the estimation of power required. (OR)	5	CO2	К3
c		5	C04	K4
d		5	CO1	K2
4.a		5	CO1	K5
b		5	CO2	K5
c	. Obtain the analytical expression for convective heat transfer coefficient in	5	CO3	К3

	laminar flow through a circular pipe.			
d.	Explain the method to determine the heat transfer coefficient in a convection experiment using measured temperature and heat input data.	5	CO2	КЗ
5.a.	Explain how energy conservation principles are applied to determine the outlet conditions during steady-state mixing of two ideal gases.	5	CO2	КЗ
b.	Discuss the factors that complicate the application of macroscopic energy balances in systems involving compressible fluids.	5	CO4	K5
	(OR)			
c.	Analyze the differences between parallel-flow and counter-flow heat exchangers in terms of energy transfer efficiency and temperature distribution.	5	CO4	K4
d.	Explain how macroscopic energy balance principles are applied to analyze the cooling process of an ideal gas under steady-flow conditions.	5	CO2	КЗ
6.a.	Compare the three modes of heat transfer conduction, convection, and radiation, with emphasis on their role in chemical process equipment design.	5	CO1	K4
b.	A fluid flows through a horizontal pipeline with a diameter of 0.1 m. The average velocity of the fluid is 2 m/s and its density is 1000 kg/m³. Calculate the pressure drop over a 10 m length of the pipe if the friction factor is 0.02. Use the mechanical energy balance.	5	CO2	K2
	(OR)			
c.	Why is understanding condensation heat transfer important in the thermal design of condensers and reboilers?"	5	CO2	K2
d.	A non-Newtonian power-law fluid flows through a circular tube of radius 0.02 m. The flow is fully developed and laminar. The flow behavior index (n) is 0.5 and the consistency index (K) is 1.2 Pa·s ⁿ . Calculate the shear stress at the wall and the pressure drop per meter of the pipe if the average velocity is 0.6 m/s. End of Paper	5	CO3	К3

--- End of Paper ---