Reg.					
No					

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

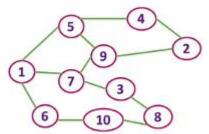
QP Code: R252B068

M. Tech. (Second Semester) Regular Examinations, July - 2025

24MCSPE12001 - Advanced Algorithms (CSE)

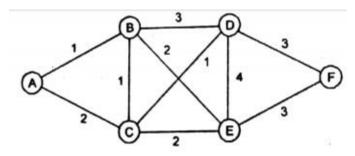
Time: 3 hrs Maximum: 60 Marks

Answer ALL questions (The figures in the right-hand margin indicate marks)


PART - A (2 x 5 = 10 Marks)

Q.1. Answer <i>ALL</i> questions					
a.	Explain the methods to compute maximum flow.	CO2	K1		
b.	Exemplify a strongly connected graph?	CO1	K1		
c.	What are the applications of MST?	CO2	K2		
d.	Where do we use Fourier transform in algorithm design?	CO1	K1		
e.	Define amortized analysis. Explain the amortized complexity for 4-bit binary incrementor. From 0 to 12.	CO2	K2		

 $PART - B ag{10 x 5} = 50 Marks$


Answ	er ALL the questions	Marks	CO#	Blooms Level
2. a.	Define a matroid. Explain the properties of a matroid with suitable examples.	5	CO1	K1
	Show how the concept of independence in matroids generalizes linear			
	independence in vector spaces and forests in graphs.			
b.	Explain BFS procedure for the following	5	CO1	K2
	()			

graph with its time complexity.

(OR)

- c. Write down the quick sort procedure for the following data: 5 CO1 K3 45,56,23,13,24,89,90,67,26,38
- d. Discuss the significance of Cook's Theorem in the theory of NP-Completeness.
 5 CO1 K1
 State and explain the theorem with its implications.
- 3.a. Find the shortest path from the node a using Dijkstra algorithm 5 CO2 K3

b. Discuss matching in a general graph using Edmond's Blossom algorithm. 5 CO2 K1

(OR)

c.	Define master theorem, Solve $T(n)=4T(2n)+n$ for the same.									К3
d.	Discuss the use of searching algorithms in solving the latest problems,									K1
4.a.	Explain Ed	Explain Edmond-Karp maximum flow algorithm for the following example.								
	Explain Editional Raip maximum flow argoritams for the following example.									
b.	Write Short notes on:									K1
	(i)Greedy I	_								
	(ii)Dynamio									
	Б 1 '	cc: · ·		(OR)		.1 . 1.		5		144
С.	Explain an efficient polynomial multiplication process with neat diagram.								CO2	K1
d.									CO2	K2
5.0	<50, 40,30,20,10> . Explain Strassen's Algorithm with an example.								CO2	V.1
5.a.	-	· ·		-		t is used in	a algorithm	5 5	CO3	K1
b.	. Define Chinese remainder theorem and explain how it is used in algorithm design?									K2
	ucsign:									
c.	(OR) Explain how insertion sort is different from bubble sort? Explain with an example								CO2	К3
c.	Explain how insertion sort is different from bubble sort? Explain with an example and its time complexity								COZ	K3
d.	- ,							5	CO2	K1
	invertible and upper triangular.									
6.a.									CO2	K2
b.								5	CO3	К3
	maximum r					_				
	Length	0	1	2	3	4	5			
	Price	0	3	5	10	12	14			
	(OR)									
c.	c. Give extended Euclid algorithm to find GCD of integers and apply the algorithm							5	CO3	К3
	for (75,87).									
d.	Explain the Simplex algorithm in detail.							5	CO3	K1
	End of Paper									