

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

Ph.D. (First Semester-Winter) Examinations, June - 2025

23WPPEMT1011 - Advanced Mathematics (Mathematics)

Time: 3 hrs Maximum: 70 Marks

The figures in the right hand margin indicate marks.

	Answer ANY FIVE Questions. $(14 \times 5 = 70 \text{ Marks})$	Marks
1.	Prove that the set of linear differential operators with constant coefficients forms a non-commutative ring under composition. Provide examples to illustrate non-commutativity.	14
2. a	Find the eigenvalues and corresponding eigen functions of the periodic Strum-Liouville problem $y'' + \lambda y = 0$, $y(0) = 0$, $y'(L) = 0$	7
b.	Find the Fourier series of $f(x) = x$, $-\pi < x < \pi$.	7
3. a.	Find the Fourier cosine integral and Fourier sine integral of $f(x) = \begin{cases} \sin x, & \text{if } 0 \le x \le \pi \\ 0, & \text{if } x > \pi \end{cases}$	7
b.	Solve the linear difference equation by Using the Z-transform $y_{n+2} - 3y_{n+1} + 2y_n = 0$, $y(0) = 1$, $y(1) = 2$.	7
4.a	Apply Runge- Kutta method (Fourth order) to find the approximate value of $y(0.2)$ given	7
	that $\frac{dy}{dx} = y - x^2 + 1$, $y(0) = 0.5$, at $h = 0.2$	
b.	Apply Taylor's series method to find the approximate value of $y(0.1)$ given that	7
	$\frac{dy}{dx} = 3x + y^2, y(0) = 1$	
5.	Solve the PDE by applying numerically method $u_t = 2u_{xx}$,	14
	BCs: $u(0,t) = 10$, $u(6,t) = 18$, $u(x,0) = \frac{x^2}{2}$	
6.	Solve the ODE $y'' + 4y' + 4y = sint$, $y(0) = 0$, $y'(0) = 1$ using Laplace transforms	14
7.	Solve the wave equation $u_{tt} = C^2 u_{xx}$, with initial and boundary conditions using Laplace transforms.	14
8.	Use the Fourier transform to solve the initial value problem for the heat equation $u_t = \alpha^2 u_{xx}$, $-\infty < x < \infty$	14

---End of Paper---