GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

Ph.D. (First Semester-Winter) Examinations, June - 2025

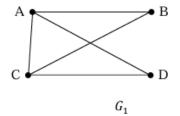
23WPPEMT1012 - Graph Theory

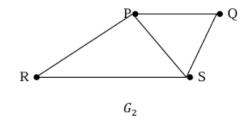
(Mathematics)

Time: 3 hrs Maximum: 70 Marks

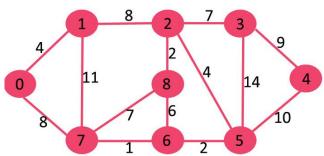
The figures in the right hand margin indicate marks.

Answer ANY FIVE Questions.


 $(14 \times 5 = 70 \text{ Marks})$


Marks

8


6

- 1.a. Define complete and complete bipartite graphs. Prove that the number of edges in a complete graph with 'n' vertices is $\frac{n(n-1)}{2}$
- b. State and prove Hand shaking theorem. Also prove that the number of vertices with odd degree in a simple graph is even.
- 2.a. Verify whether the following two graphs are isomorphic or not.

- b. For any graph G, prove that $\kappa(G) \le \lambda(G) \le \delta(G)$
- 3.a. Write the Prim's algorithm to find the minimal spanning tree. Use it to find the minimal spanning tree for the following graph

- b. Prove that every tree is a bipartite graph. Also, state that which trees are complete bipartite graphs?
- 4.a. Prove the Euler formula for a graph to be Planar. Hence, prove that K₅ is non-planar.
 - b. Prove that every planar graph is 5-colorable.
 - 5.a. A graph is planar if and only if it has no subgraphs homeomorphic to K_5 or $K_{3,3,.}$ 10
 - b. Prove that every tree has a center consisting of one point or two adjacent points.

6.a.	A graph is the line graph of a tree if and only if it is a connected block graph in which each cut point is on exactly two blocks.		8
b.	Prove that for a cos $\frac{(p-3)(p-4)}{12}$	mplete graph with 'p' vertices, the genus is greater than or equal to	6
7.a.	State and prove Heawood Map colouring theorem		8
b.	For any graph G, prove that $\chi(G) \leq 1 + \delta(G)$		6
8.	Prove that the following statements are equivalent:		14
	(i)	G is a line graph	
	(ii)	The lines of G can be partitioned into complete subgraphs in such a way that no point lies in more than two of the subgraphs.	

(iv) None of the nine graphs ia n induced subgraph of G.

(iii)

---End of Paper---

G does not have $K_{1,3}$ as an induced subgraph, amd if two odd triangles have a common line then the subgraph induced by their points is K_4 .