Reg. No

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

Ph.D. (First Semester-Winter) Examinations, June – 2025 **23WPPECH1021 – ELECTROCHEMISTRY** (Chemical)

Time: 3 hrs Maximum: 70 Marks

The figures in the right hand margin indicate marks.

	Answer ANY FIVE Questions. $(14 \times 5 = 70 \text{ M})$	(arks)	Marks
1.a.	Discuss the steps involved in a general electrochemical reaction mechanism.		8
b.	How can techniques like cyclic voltammetry be used to investigate these mechanisms	s?	6
2.	Discuss the steps involved in a general electrochemical reaction mechanism. H	low can	14
	techniques like cyclic voltammetry be used to investigate these mechanisms?		
3.a.	Explain the working principle of cyclic voltammetry. How is it used to study the reve	ersibility	7
	and kinetics of redox reactions?		
b.	Explain the principle and working of a rotating disk electrode. How is the Levich	equation	7
	derived and what does it signify?		
4.	What are super capacitors? Describe their types (EDLCs and pseudo capacitors)	, charge	14
	storage mechanisms, and materials used. How do hybrid energy storage systems com-	bine the	
	advantages of batteries and super capacitors?		
5.a.	Explain the working principles of Proton Exchange Membrane Fuel Cells (PEMFC	C), Solid	7
	Oxide Fuel Cells (SOFC).		
b.	Discuss the major challenges and future prospects for Na-ion batteries as a sus	stainable	7
	alternative to Li-ion technology.		
6.a.	Describe the industrial-scale chlor-alkali process. Explain the reactions at the an	ode and	7
	cathode, the role of the membrane or diaphragm, and the overall process design.		
b.	Describe various techniques such as electro coagulation, electro oxidation, and	electro-	7
	Fenton processes.		
7.	What is photo-electrochemistry? Discuss the principles of photo electrochemical	al water	14
	splitting and the materials used for photo anodes and photocathode. How does this te	chnique	
	contribute to solar energy conversion and hydrogen generation?		
8.a.	Discuss the integration of machine learning (ML) in computational electrochemistry		7
b.	Discuss the challenges in multiscale modelling, data sharing, and real-time simula	ation for	7
	energy storage and conversion systems.		