24	Reg. No		
----	---------	--	--

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

AR

Ph.D. (Second Semester-Summer) Examinations, May - 2025

23SPPEPH2011 - Multifunctional material Preparation, Properties and their Applications

(Physics)

Time: 3 hrs Maximum: 70 Marks

The figures in the right-hand margin indicate marks.

	Answer ANY FIVE Questions. (14 x	5 = 70 Marks)	Marks
1.	Define and list out various methods used on Chemical Vapor Deposition (CV detail the LASER CVD and ALD methods and their working principles with a		14
2.a	Write short notes on Langmuir-Blodgett growth and Ball milling method.		7
b.	Compare between Sol-gel and Hydrothermal synthesis method.		7
3.a.	How do multiphase materials balance demands like high conductivity and	high porosity?	7
	Explain how hierarchical porous structures enhance multifunctionality is	n sensors and	
	batteries? What role do nanofillers (e.g., carbon nanotubes, graphene) play	y in enhancing	
	conductivity without increasing density?		
b.	How can grain size and microstructure control the strength, hardness, and	-	7
	material? Define strength and toughness of a material and write its importance properties in multifunctional materials for construction?	to balance both	
4.	Define CNTs and Graphene. Write down its properties and applications. Disc	cuss the role of	14
	carbon nanotubes and graphene in improving the mechanical properties of high	-strength nano-	
	composites.		
5.a.	What is a sensor? Compare between fluorescence-based Nano sensors and e	electrochemical	7
	Nano sensors.		
b.	Define solid electrolyte interface (SEI), and why is it important? Compare between		7
	Na ion batteries. What are the advantages of lithium-ion batteries compared to	• •	
6.a.	Define nano materials. Write down its different synthesis procedure. Li	st out various	7
	biological and biomedical applications of the nano materials.		
b.	Define S parameters. Write down its various properties. Why S parameter	is required for	7
_	Microwave applications?		
7.	Write the working principle behind the open-ended coaxial probe and free sp		14
	investing for EM properties of material with proper diagram and compare between	ween these two.	
	Also provide its advantage and disadvantage of these methods.		
8.	Define dielectric constant, dielectric loss and dielectric breakdown. Exp		14
	properties play a crucial role in device design. How does dielectric loss affect		
	in high-speed circuits? How does the microstructure (grain boundaries, p	orosity) affect	
	dielectric performance?		

---End of Paper---