$(14 \times 5 = 70 \text{ Marks})$ Marks

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

Answer ANY FIVE Questions.

Ph.D. (Second Semester-Summer) Examinations, May - 2025

23SPPEMT2012 - Mathematical Modeling and Algorithm Design for IoT-Based Agricultural Management

(Mathematics)

Time: 3 hrs Maximum: 70 Marks

The figures in the right hand margin indicate marks.

	Allswei Avi 1172 Questions.	XS = 70 Marks	wan K
1.a.	Describe how differential equations can be used to model crop growth.		8
b.	Illustrate a real-world problem in agriculture that can be modeled with optim	nization.	6
2.	Discuss FIFO vs. priority queues in the context of weather data buffering.		14
3.a.	Design a gateway-based data collection strategy for crop monitoring.		7
b.	Discuss how MQTT enables real-time control in fertilizer application		7
4.	Explain how Model Predictive Control can improve water usage efficiency.		14
5.a.	Discuss the integration of neural networks in disease outbreak prediction.		7
b.	Design a time-series model to forecast crop yield over seasons.		7
6.a.	Explain the concept of sets and functions with respect to soil nutrient classif	ication.	7
b.	Analyze the computational complexity of a typical agricultural IoT control s	system.	7
7.	Describe the role of LoRa in long-range agricultural communication.		14
8.a.	Discuss the integration of neural networks in disease outbreak prediction.		7
b.	Analyze the effect of latency on real-time pest control decisions.		7

---End of Paper---