Reg.					
No					

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

Ph.D. Second Semester Supplementary Examinations, May – 2025 WPPEMT2027 – Fluid Dynamics (Mathematics)

Time: 3 hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.)

(14 x 5=70 Marks)

AR 22

Answ	er ANY FIVE questions	Marks					
1.	Prove that the pressure p at a point P in a moving inviscid fluid is same in all						
	direction.						
2.	Derive Stream function for an Axi-Symmetric Flow (Stoke's Stream Function)						
3. a	Derive complex potential for two dimensional irrotational in compressive flow.						
b	Derive Complex velocity potentials for standard two dimensional flow.						
4.	A two dimensional doublet of strength $\mu \hat{\imath}$ per unit length is at a point $z = ia$						
	stream of velocity -Vî in a semi-infinite liquid of constant density occupying the						
	half plane $y > 0$ and having $y = 0$ as a rigid impermeable boundary, \hat{l} being the unit vector in the positive x-axis. Show that the complex potential of the motion is						
	$W = Vz + 2\mu z/(z^2 + a^2)$						
	Also show that for $0<\mu<4a^2V$, there are no stagnation points on the boundary that the pressure on it is a minimum at the origin and maximum at the points						
	$(\pm a \sqrt{3}, 0).$						
5.	Derive the expressions for the shearing stress on the outer and the inner cylinder	14					
	for steady flow between concentric rotating cylinders.						
6.	Derive the expression for Energy dissipation due to viscosity.	14					
7.	Explain Translational motion of fluid element.	14					
8.	Derive the expressions for Steady viscous flow in tubes of uniform cross-section.	14					
	End of Paper						