

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

Ph.D. (Second Semester-Summer) Examinations, May – 2025 23SPPEMT2013 – Advanced Differential Equations (Mathematics)

Time: 3 hrs Maximum: 70 Marks

The figures in the right hand margin indicate marks.

	Answer ANY FIVE Questions. $(14 \times 5 = 70 \text{ Marks})$	Marks
1. a.	Find the general solution of the following differential equation $x^2y'' + 2xy' - 12y = 0$,	8
	x > 0	
b.	Solve $(1+x)\frac{dy}{dx} - xy = (1-x)$.	6
2. a.	Solve $\frac{dy}{dx} = x + y^2$ with $y(0) = 1$. Find $y(0.2)$, where $h = 0.1$ using Range-Kutta Method of	10
	4 th order form.	
b.	Explain relationship between consistency, stability and convergence.	4
3. a.	Form a PDE by eliminating the function from the following equation	6
	z = f(x + at) + g(x - at).	
b.	Solving by Charpit's Method; $2zx - px^2 - 2qxy + pq = 0$.	8
4.	Using Milne's Predictor Corrector Method, find y when x=0.8. Given $\frac{dy}{dx} = x - y^2$, $y(0) =$	14
	0, y(0.2) = 0.002, y(0.4) = 0.0795, y(0.6) = 0.1762.	
5.	Given $\frac{dy}{dx} = x^2(1+y)$ by Adams Bashforth Method $y(1) = 1$, $y(1.1) = 1.233$, $y(1.2) = 1.233$	14
	1.548, $Y(1.3) = 1.97$. find $y(1.4)$.	
6. a.	Give a comparison between Euler Method and Modified Euler Method.	4
b.	Find the value of y at $x = 0.4$ of the following equation in Modified Euler Method	10
	$\frac{dy}{dx} = x^2 + y$, $y(0) = 1$, and $h = 0.1$	
7.	Derivation of equation of motion in a cylindrical Coordinate system.	14
8.	Derive the Rayleigh wave propagation in a two layered medium discussed by Rayleigh.	14

---End of Paper---