Δ	\mathbf{v}	23	

Reg. No

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

QP Code: RA23MCA031

M.C.A (Fourth Semester) Regular Examinations, April – 2025 MCA 23431 – Soft Computing (MCA)

Time: 3hrs		Maximum: 60 Marks		
PAR	(The figures in the right hand margin indicate marks) $\mathbf{T}-\mathbf{A}$	(2 x 5	= 10 N	(Jarks
Q.1. A	Answer ALL questions		CO#	Blooms
a. V	Why sigmoid activation function is one of the most widely used function?		CO1	K2
b. D	Differentaite between ART1 & ART2.		CO2	K2
c. D	Discuss the purpose of defuzzification?		CO3	K1
d. Explain the role of fitness function in genetic algorithm?			CO4	K2
e. What is the difference between supervised & unsupervised learning in neural network		rk?	CO5	K1
PAR	T - B	(10 x5	5=50 N	Iarks)
Answ	er ALL questions	Marks	CO#	Blooms Level
2. a.	Compare & contrast between neural network, fuzzy logic & genetic algorithm.	5	CO1	K2
b.	Explain supervised, unsupervised & reinforcement learning with relevant examples.	5	CO1	K1
	(OR)	5	CO1	K2
c.	Explain ADALINE & MADALINE architectures with a neat diagram.			
d.	Explain the basic model of an artificial neuron with the help of a diagram.	5	CO1	K2
3.a.	Write a short note on general ART architecture.	5	CO2	K2
b.	Differentiate between Autocorrelators (HAM) & Heterocorrelators (BAM).	5	CO2	K2
	(OR)	_	GO1	1//0
c.	What are the different types of neural networks? Explain briefly.	5	CO1	K2
d.	Differentiate between hard computing & soft computing with examples.	5	CO1	K2
4.a.	Explain the differences between fuzzy set & crisp set with appropriate examples.	5	CO3	K2
b.	Compare Mamdani FIS & Sugeno FIS. Which one is better for real-time applications? (OR)	5	CO3	K2
c.	Discuss role of membership function in fuzzy set theory.	5	CO3	K2
d.	Differentiate between fuzzification & defuzzification.	5	CO3	K2
5.a.	Explain the importance of parameter tuning (mutation rate, crossover rate,	5	CO4	K2
b.	population size) in genetic algorithm. Compare genetic algorithm & traditional optimization method.	5	CO4	K2

What is the importance of maintaining genetic diversity in GA?

(OR)

c.	Explain crossover operators in genetic algorithm.		CO4	K2
	Compare single point, multi point & uniform crossover.			
d.	Discuss mutation operator & their impact on the performance of genetic	5	CO4	K2
	algorithm.			
6.a.	Discuss some real-world applications of soft computing.	5	CO5	K2
	How do hybrid models improve decision making & optimization?			
b.	Explain how neural network, fuzzy logic & genetic algorithm work together in	5	CO5	K2
	hybrid computing?			
	(OR)			
c.	What are the major challenges in implementing hybrid NN-FL-GA system?	5	CO5	K2
	How do you address these challenges?			
d.	Differentiate between traditional AI-based approaches & soft computing-based	5	CO5	K2
	approaches. In which applications is soft computing preferred?			

--- End of Paper ---