_					
Reg.					
IXCE.					
. 0					
No					
LNO					

AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.C.A (Second Semester) Regular Examinations, May – 2025 MCA23201 – Design and Analysis of Algorithms (MCA)

Time: 3hrs Maximum: 60 Marks

(The figures in the right hand margin indicate marks) $PART-A \eqno(2\ x\ 5)$						
Q.1. Answer <i>ALL</i> questions				Blooms Level		
a. Prov	a. Prove that $n! = o(n^n)$					
b. Wri	b. Write the recurrence relation for binary search					
c. Hov	c. How BFS is different from DFS?					
d. Defi		CO4	K 1			
e. What are the differences between 'Backtracking' and 'Branch & Bound' algorithm techniques?						
PART – B (10 x				5=50 Marks)		
Answer ALL questions				Blooms Level		
	Show that $f_1(n) + f_2(n) = O(\max(g_1(n), g_2(n)))$ where $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$.	5	CO1	K2		
	Solve the recurrences using Master Theorem $T(n) = 3T(n/4) + n \log n$	5	CO1	K2		
	(OR)					
	Solve the following recurrence relation using iteration method. $T(n) = 8T(n/2) + n^2$. Here $T(1) = 1$.	5	CO1	K2		
d.	What is asymptotic notation? Why asymptotic notation is used? Explain different asymptotic notations briefly.	5	CO1	K2		
3.a.	Write algorithm of Chain matrix multiplication using Dynamic programming. Find out optimal sequence for multiplication: A1 $[5 \times 4]$, A2 $[4 \times 6]$, A3 $[6 \times 2]$, and A4 $[2 \times 7]$. Also give the optimal parenthesis of matrices.	10	CO2	К3		
b.	Write an algorithm for quick sort with one example	5	CO2	K2		
c.	Find the longest common subsequence of the strings "LONGEST" and "STONE",	5	CO2	К3		
	Write the Kruskal algorithm with one example.	5	CO3	K2		

b. Use single-source-shortest-path 5 CO₃ **K**3 Dijkstra's algorithm to find the shortest distance from the source a, of the following graph. (OR) c. Write Huffman code algorithm and Generate Huffman code for the string 5 CO3 **K**3 "DAA" 5 CO3 d. Consider the following instance of the Fractional K3 knapsack problem, n = 3 capacity of Knapsack W=50, w=(10,20,40) and v=(60,80,100) find the optimal profit using greedy approach 5 CO₄ K2 5.a. Working modulo q = 11. How many spurious hits does the Rabin-Karp matcher encounter in the text T = 3141592653589793 when looking for the pattern P = 26? b. Given a set $S = \{5, 10, 12, 13, 15, 18\}$ and Sum=30, find the subset sum 5 CO4 **K**3 using backtracking approach. (OR) Write the KMP algorithm with one example. 10 CO4 K3 c. 5 6.a. Solve the assignment problem CO₅ K3 **J**1 J2 J3 **J**4 9 Α 11 4 10 В 8 5 9 6 $\overline{\mathbf{C}}$ 7 3 10 10 9 8 11 D 6 CO₅ Define P, NP, NP complete and NP-Hard problems. Give examples of each. 5 K3 (OR) \mathbf{C} 5 CO₅ K3 Solve the traveling salesman problem Α В D 10 15 20 A ∞ В 5 9 10 ∞ C 9 6 13 D 8 8 12

d.	Explain use of branch and bound technique for solving assignment problem	5	CO5	K2
	End of Paper			