Reg.					
No					

AY - 23

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M. Sc. (Fourth Semester) Regular Examinations, April 2025

22MTPC404 - Number Theoretic Cryptography (Mathematics)

Time: 3 hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks.) PART-A			$(2 \times 10 = 20 \text{ Marks})$			
0.1.	Answer ALL questions		CO#	Blooms		
			go.1	Level		
a.	Multiply (212) ₃ by (122) ₃		CO1	K2		
b.	Find the $g.d.c(1547,560)$		CO1	K1		
c.	Using any Shift transformation encrypted the message "GIETU".		CO2	K2		
d.	Determine A^{-1} if $A = \begin{pmatrix} 15 & 17 \\ 4 & 9 \end{pmatrix}$ mod 26 using enciphering matrices.		CO2	K2		
e.	Find the solution of the Knapsack problem $\{v_i\} = \{2,3,7,20,35,69\}, V = 45$.		CO3	K2		
f.	Check whether the number 2465 is Carmichael numbers or not		CO3	K2		
g.	Find the Continued fraction of $\frac{55}{89}$.		CO4	K2		
h.	Let $n = 4633$. Find the smallest factor base B such that the square of 68,69 and are B-numbers	96	CO4	K2		
i.	Using Gauss Lemma find $\left(\frac{3}{13}\right)$		CO2	K2		
j.	Find the Quadratic Residue and Non- Quadratic Residue of F_{13}^* ?		CO2	K2		
PART – B		$(10 \times 5 = 50 \text{ Marks})$				
PA	ART - B	(10 x 5	= 50 M	(arks)		
	NRT – B ver ANY FIVE questions	(10 x 5	= 50 M CO #	Blooms		
Ansv	ver ANY FIVE questions	Marks	CO#	,		
	wer ANY FIVE questions $x \equiv 2 \mod 3$ Solve $x \equiv 3 \mod 5$ $x \equiv 4 \mod 11$. Find the non-negative solution			Blooms Level		
Ansv 2.	$x \equiv 2 \mod 3$ Solve $x \equiv 3 \mod 5$ $x \equiv 4 \mod 11$ Solve $x \equiv 4 \mod 16$ Find the non-negative solution $x \equiv 5 \mod 16$	Marks	CO#	Blooms Level 2		
2. 3.a.	wer ANY FIVE questions $x \equiv 2 \mod 3$ Solve $x \equiv 3 \mod 5$ $x \equiv 4 \mod 11$ Find the non-negative solution $x \equiv 5 \mod 16$ State and prove Fermat's Little Theorem.	Marks 10	CO# CO1	Blooms Level 2		
Ansv 2.	ver ANY FIVE questions $x \equiv 2 \mod 3$ Solve $x \equiv 3 \mod 5$ $x \equiv 4 \mod 11$ Find the non-negative solution $x \equiv 5 \mod 16$ State and prove Fermat's Little Theorem. Find a 3-digit number which leaves a reminder of 4 when divided by 7, 9, or	Marks	CO#	Blooms Level 2		
2. 3.a. b.	wer ANY FIVE questions $x \equiv 2 \mod 3$ Solve $x \equiv 3 \mod 5$ $x \equiv 4 \mod 11$. Find the non-negative solution $x \equiv 5 \mod 16$ State and prove Fermat's Little Theorem. Find a 3-digit number which leaves a reminder of 4 when divided by 7, 9, or 11.	Marks 10 5 5	CO# CO1 CO1	Blooms Level 2		
2. 3.a. b.	wer ANY FIVE questions $x \equiv 2 \mod 3$ Solve $x \equiv 3 \mod 5$ $x \equiv 4 \mod 11$ Find the non-negative solution $x \equiv 5 \mod 16$ State and prove Fermat's Little Theorem. Find a 3-digit number which leaves a reminder of 4 when divided by 7, 9, or 11. Find the $g.c.d$ of $f(x) = x^4 + x^3 + x^2 + 1$ and $g(x) = x^3 + 1$ in $F_{2(x)}$,	Marks 10	CO# CO1	Blooms Level 2		
2. 3.a. b.	ver <i>ANY FIVE</i> questions $x \equiv 2 \mod 3$ Solve $x \equiv 3 \mod 5$ $x \equiv 4 \mod 11$. Find the non-negative solution $x \equiv 5 \mod 16$ State and prove Fermat's Little Theorem. Find a 3-digit number which leaves a reminder of 4 when divided by 7, 9, or 11. Find the $g.c.d$ of $f(x) = x^4 + x^3 + x^2 + 1$ and $g(x) = x^3 + 1$ in $F_{2(x)}$, using Euclidean Algorithm.	Marks 10 5 5	CO# CO1 CO1	Blooms Level 2		
2. 3.a. b. 4.	wer <i>ANY FIVE</i> questions $x \equiv 2 \mod 3$ Solve $x \equiv 3 \mod 5$ $x \equiv 4 \mod 11$ Find the non-negative solution $x \equiv 5 \mod 16$ State and prove Fermat's Little Theorem. Find a 3-digit number which leaves a reminder of 4 when divided by 7, 9, or 11. Find the $g.c.d$ of $f(x) = x^4 + x^3 + x^2 + 1$ and $g(x) = x^3 + 1$ in $F_{2(x)}$, using Euclidean Algorithm. State and prove Law of Quadratic Reciprocity for Legendre Symbol.	Marks 10 5 5 10	CO# CO1 CO1 CO2	Blooms Level 2 2 2 2		
2. 3.a. b. 4.	wer <i>ANY FIVE</i> questions $x \equiv 2 \mod 3$ Solve $x \equiv 3 \mod 5$ $x \equiv 4 \mod 11$. Find the non-negative solution $x \equiv 5 \mod 16$ State and prove Fermat's Little Theorem. Find a 3-digit number which leaves a reminder of 4 when divided by 7, 9, or 11. Find the $g.c.d$ of $f(x) = x^4 + x^3 + x^2 + 1$ and $g(x) = x^3 + 1$ in $F_{2(x)}$, using Euclidean Algorithm. State and prove Law of Quadratic Reciprocity for Legendre Symbol.	Marks 10 5 5 10 10	CO# CO1 CO1 CO2 CO2	Blooms Level 2 2 2 2		
2. 3.a. b. 4.	wer <i>ANY FIVE</i> questions $x \equiv 2 \bmod 3$ Solve $x \equiv 3 \bmod 5$ $x \equiv 4 \bmod 11$ Find the non-negative solution $x \equiv 5 \bmod 16$ State and prove Fermat's Little Theorem. Find a 3-digit number which leaves a reminder of 4 when divided by 7, 9, or 11. Find the $g.c.d$ of $f(x) = x^4 + x^3 + x^2 + 1$ and $g(x) = x^3 + 1$ in $F_{2(x)}$, using Euclidean Algorithm. State and prove Law of Quadratic Reciprocity for Legendre Symbol. Decrypt the message "NMYSOZGK" using Affine transformation with $a = 7, N = 26, b = 12$.	Marks 10 5 5 10 10	CO# CO1 CO1 CO2 CO2	Blooms Level 2 2 2 2		
2. 3.a. b. 4. 5. 6.	$x \equiv 2 \mod 3$ Solve $x \equiv 3 \mod 5$. Find the non-negative solution $x \equiv 4 \mod 11$. Find the non-negative solution $x \equiv 5 \mod 16$ State and prove Fermat's Little Theorem. Find a 3-digit number which leaves a reminder of 4 when divided by 7, 9, or 11. Find the $g.c.d$ of $f(x) = x^4 + x^3 + x^2 + 1$ and $g(x) = x^3 + 1$ in $F_{2(x)}$, using Euclidean Algorithm. State and prove Law of Quadratic Reciprocity for Legendre Symbol. Decrypt the message "NMYSOZGK" using Affine transformation with $a = 7, N = 26, b = 12$. Suppose that plain text message units are single letter 26-letter alphabet with A to Z corresponding to 0 to 25. The public key is the sequence $w_i = 0$	Marks 10 5 5 10 10 10	CO# CO1 CO1 CO2 CO2 CO2 CO3	Blooms Level 2 2 2 2 2		
2. 3.a. b. 4. 5. 6.	wer <i>ANY FIVE</i> questions $x \equiv 2 \mod 3$ Solve $x \equiv 3 \mod 5$ $x \equiv 4 \mod 11$. Find the non-negative solution $x \equiv 5 \mod 16$ State and prove Fermat's Little Theorem. Find a 3-digit number which leaves a reminder of 4 when divided by 7, 9, or 11. Find the $g.c.d$ of $f(x) = x^4 + x^3 + x^2 + 1$ and $g(x) = x^3 + 1$ in $F_{2(x)}$, using Euclidean Algorithm. State and prove Law of Quadratic Reciprocity for Legendre Symbol. Decrypt the message "NMYSOZGK" using Affine transformation with $a = 7, N = 26, b = 12$. Suppose that plain text message units are single letter 26-letter alphabet with	Marks 10 5 5 10 10 10	CO# CO1 CO1 CO2 CO2 CO2 CO3	Blooms Level 2 2 2 2 2 2		

End of Paper

10

CO4

2

8. Using Continued fraction factoring algorithm to factor 9073