Reg.						AY - 23
No						

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M. Sc. (Fourth Semester) Regular Examinations, April 2025

22MTPC403 - Functional Analysis

(Mathematics)

Time: 3 hrs			Maximum: 70 Marks			
(The figures in the right hand margin indicate marks.) $\label{eq:part} \textbf{PART}-\textbf{A}$			$(2 \times 10 = 20 \text{ Marks})$			
Q.1.	Answer ALL questions		CO#	Blooms Level		
a.	What do we mean by a convex set?		CO1	K1		
b.	What is the condition for a mapping $F: X \to Y$ to be a Homeomorphism?		CO1	K2		
c.	Define Normed Space with an example.		CO2	K2		
d.	Define the Banach space.		CO2	K3		
e.	Define the Interior point and the limit point of a space E.		CO3	K3		
f.	State the Bounded Inverse theorem.		CO3	K3		
g.	State the Polarization Identity		CO4	К3		
h.	Define Schwarz Inequality		CO4	К3		
i.	State the Riesz representation theorem		CO5	K3		
j.	Define Unitary and Normal operator		CO5	K3		
PART – B		$(10 \times 5 = 50 \text{ Marks})$				
Answ	ver ANY FIVE questions	Marks	CO#	Blooms Level		
2. a	Show that the norm ' is equivalent to the norm if and only if there are $\alpha > 0, \beta > 0$, such that $\beta x \le x ' \le \alpha x $, for all $x \in X$	5	CO1	K2		
b	Let X be a normed space, Y be a closed subspace of X and $Y \neq X$. Let r be a real number such that $0 < r < 1$. Then there exist some $x_r \in X$ such that $ x_r = 1$ and $r \leq dist(x_r, Y) \leq 1$.	5	CO1	K2		
3.	 Let X be a normed space. Then show that the following conditions are equivalent. i. Every closed and bounded subset of X is compact. ii. The subset x ∈ X: x ≤ 1 of X is compact. iii. Xis finite dimensional. 	10	CO2	K2		
4. a	Let X and Y be normed spaces. Then show that, if X is finite dimensional, then every linear map from X to Y is continuous. Conversely, if X is finite dimensional and $Y \neq \{0\}$, then there is a discontinuous linear map from X to Y .	5	CO2	K2		
b		5	CO2	K2		
5.a.	Let X and Y be a normed space and $F: X \to Y$ be a linear map such that the range $R(F)$ of F is finte dimensional. Then prove that F is continuous if and only if the zero space $Z(F)$ of F is closed in X		CO3	K2		
b		5	CO3	K2		

summable series of elements in X is summable in X.

6.	Let H be a nonzero Hilbert space over K. Then the following conditions are							
	equivalent							
	(i) H has a countable orthonormal basis	10	CO4	K3				
	(ii) H is linearly isometric to K ⁿ for some n, .							
	(iii) H is separable.							
7.a.	State and Prove Riesz-Fischer theorem.	5	CO4	K3				
b.	State and Prove Gram- Schmidt orthonormalization.	5	CO4	K3				
8. a.	Let H be a Hilbert space. consider A, $B \in BL(H)$ and $k \in$	5	CO5	K3				
	k.Then Prove that							
	(a) $(A+B) *=A*+B* (b)$, $(KA*) = \overline{k}A*$, $(c) (AB)*=B*A*$, $(d) (A*) *=A$.							
b.	Let H be a Hilbert space and A and B be normal. Prove that If A commutes	5	CO5	K3				
	with B* B commutes with A* then A+B and AB are normal.							