Reg.					
No					

AY - 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M. Sc. (4th Semester) Regular Examinations, April - 2025

22CHPC401 - Physical Chemistry-III

(Chemistry)

Time: 3 hrs Maximum: 70 Marks

1 1111	C. 3 ms	Maxii	num. /) IVIAINS	
PA	(The figures in the right hand margin indicate marks.)	$(2 \times 10 = 20 \text{ Marks})$			
	Answer ALL questions	(= 11 = 0	CO#	Blooms Level	
a.	Calculate the ionic strength of NaOH solution with a concentration of 5 mol/L.		CO1	K2	
b.	Given the electrochemical reaction shown, if the standard reduction potential of		CO2	K2	
	Ag^+/Ag is +0.80 V, and the standard reduction potential of Cu $^{2+}/Cu$ is +0.34V, out E° of the cell.	Find			
c.	What do you mean by CMC?		CO3	K1	
d.	Determine the miller indices for a plane when the intercept along the axes are (2a,3b,2c).		CO4	K2	
e.	State and explain Debye-Huckel Onsager equation.		CO1	K1	
f.	Write the cell notation of		CO2	K2	
	$Zn \longrightarrow Zn^{2+} + 2e$				
	$2H^++2e-\longrightarrow H_2$				
g.	What are the different applications of surfactant?		CO3	K1	
h.	State and explain Bragg's Equation?		CO4	K2	
i.	Discuss about solution pressure and osmotic pressure.		CO3	K1	
j.	Explain F- center formation.		CO4	K2	
PART – B			$(10 \times 5 = 50 \text{ Marks})$		
Ansv	wer ANY FIVE questions	Marks	CO#	Blooms Level	
2. a.	Derive Lippann's equation.	5	CO1	K3	
b.	Explain mean ionic activity coefficient of a solution.	5	CO1	K2	
3.a.	Derive Nernst's equation .	5	CO2	K2	
b.	Calculate the EMF and standard Gibbs free energy change of the cell	5	CO2	К3	
	Zn/Zn + 2 (0.1 M)//Cu + 2 (0.1 M)/Cu at 298 K given that E o $Zn/Zn + 2 = -$				
	0.76 V and E o Cu +2 /Cu = $0.34 V$.				
4.	Derive and explain BET equation	10	CO3	K3	
5.a.	Calculate the packing fraction in BCC and FCC.	5	CO4	K3	
b.	Differentiate between Schottkey defect and Frankel defect.	5	CO4	K1	
6. a.	Define Fuel cell, explain it's working principles and its applications.	5	CO2	K2	
b.	Define corrosion and explain the different types of corrosion.	5	CO2	K1	
7.a.	Explain the characteristics of physical adsorption and chemical adsorption.	5	CO3	K3	
b.	State and explain Kelvin equation on surface adsorption.	5	CO3	K3	
8. a.	Explain Bjerrum method.	5	CO1	K2	
b.	Explain Debye-Huckel limiting law with suitable example	5	CO1	K3	

End of Paper