| Reg. | | | | | | |------|--|--|--|--|--| | No | | | | | | AY 23 ## GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY) M. Sc. (Third Semester) Regular Examinations, December – 2024 **22PHPC301 – Relativistic Quantum Mechanics and Field Theory**(M.Sc. Physics) Time: 3 hrs Maximum: 70 Marks | F | (The figures in the right hand margin indicate marks.) $PART-A \eqno(2\ x\ 10\ x)$ | | | | | | | |--------------------------------------|---|----------------|-------------|-----------------|--|--|--| | Q.1. | Answer ALL questions | | CO# | Blooms
Level | | | | | a. | What is the basic difference between relativistic and non relativistic question mechanics? | uantum | CO1 | K1 | | | | | b. | What is central potential and give its characteristics? | | CO1 | K1 | | | | | c. | Discuss the drawbacks of K.G equation? | | CO1 | K1 | | | | | d. | Discuss the concepts of Relativistic quantum mechanics? | | CO1 | K1 | | | | | e. | If α and β are the Dirac matrices, then prove that, $\alpha_x \alpha_y \alpha_z = \frac{1}{2} [\alpha_x \alpha_y \alpha_z \beta, \beta]$ | | CO2 | K2 | | | | | f. | Show that $\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 2\delta_{\mu\nu}$ | | CO2 | K2 | | | | | g. | Define field, field strength and field function? | | CO3 | K1 | | | | | h. | What are the different approaches to formulate 'QFT'? | | CO3 | K1 | | | | | i. | What are the important steps towards field quantization? | | CO4 | K1 | | | | | j. | Define a neutral scalar meson field ? | | CO4 | K1 | | | | | $\mathbf{PART} - \mathbf{B} \tag{1}$ | | | | 5=50 Marks) | | | | | Ans | swer ANY FIVE questions | Marks | CO# | Blooms
Level | | | | | 2. a | a. Discuss the properties of Dirac matrices? | 5 | CO1 | K2 | | | | | t | Show that , $(\alpha.B)$ ($\alpha.C$) = $B.C$ + $i\sigma'$ ($B \times C$), where α represents three Dirac | | | | | | | | | | 5 | CO1 | K2 | | | | | | matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. | 5 | | K2 | | | | | 3 | matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant | 5
10 | | K2
K1 | | | | | | matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant form. What is Spin orbit coupling? Derive the expression for the spin orbit | | CO1 | | | | | | 4 | matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant form. | 10 | CO1 | K1 | | | | | 5 | matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant form. What is Spin orbit coupling? Derive the expression for the spin orbit interaction energy. | 10
10 | CO1 CO2 | K1
K1 | | | | | 5 | matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant form. What is Spin orbit coupling? Derive the expression for the spin orbit interaction energy. Derive Dirac's free particle in the presence of Electromagnetic field. | 10
10
10 | CO1 CO2 CO2 | K1
K1
K1 | | | | | 5 | matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant form. What is Spin orbit coupling? Derive the expression for the spin orbit interaction energy. Derive Dirac's free particle in the presence of Electromagnetic field. Show that symmetry leads to a conservation using Noether's theorem? | 10
10
10 | CO1 CO2 CO2 | K1
K1
K1 | | | | operators for a neutral scalar field.