Reg.					
No					

AY 23

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M. Sc. (Third Semester) Regular Examinations, December – 2024 **22PHPC301 – Relativistic Quantum Mechanics and Field Theory**(M.Sc. Physics)

Time: 3 hrs Maximum: 70 Marks

F	(The figures in the right hand margin indicate marks.) $PART-A \eqno(2\ x\ 10\ x)$						
Q.1.	Answer ALL questions		CO#	Blooms Level			
a.	What is the basic difference between relativistic and non relativistic question mechanics?	uantum	CO1	K1			
b.	What is central potential and give its characteristics?		CO1	K1			
c.	Discuss the drawbacks of K.G equation?		CO1	K1			
d.	Discuss the concepts of Relativistic quantum mechanics?		CO1	K1			
e.	If α and β are the Dirac matrices, then prove that, $\alpha_x \alpha_y \alpha_z = \frac{1}{2} [\alpha_x \alpha_y \alpha_z \beta, \beta]$		CO2	K2			
f.	Show that $\gamma_{\mu}\gamma_{\nu} + \gamma_{\nu}\gamma_{\mu} = 2\delta_{\mu\nu}$		CO2	K2			
g.	Define field, field strength and field function?		CO3	K1			
h.	What are the different approaches to formulate 'QFT'?		CO3	K1			
i.	What are the important steps towards field quantization?		CO4	K1			
j.	Define a neutral scalar meson field ?		CO4	K1			
$\mathbf{PART} - \mathbf{B} \tag{1}$				5=50 Marks)			
Ans	swer ANY FIVE questions	Marks	CO#	Blooms Level			
2. a	a. Discuss the properties of Dirac matrices?	5	CO1	K2			
t	Show that , $(\alpha.B)$ ($\alpha.C$) = $B.C$ + $i\sigma'$ ($B \times C$), where α represents three Dirac						
		5	CO1	K2			
	matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices.	5		K2			
3	 matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant 	5 10		K2 K1			
	 matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant form. What is Spin orbit coupling? Derive the expression for the spin orbit 		CO1				
4	 matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant form. 	10	CO1	K1			
5	 matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant form. What is Spin orbit coupling? Derive the expression for the spin orbit interaction energy. 	10 10	CO1 CO2	K1 K1			
5	 matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant form. What is Spin orbit coupling? Derive the expression for the spin orbit interaction energy. Derive Dirac's free particle in the presence of Electromagnetic field. 	10 10 10	CO1 CO2 CO2	K1 K1 K1			
5	 matrices and B and C are usual three dimensional matrices and σ' is a 4x4 matrix related to Pauli matrices. Derive Dirac equation for a free particle? Express Dirac equation in covariant form. What is Spin orbit coupling? Derive the expression for the spin orbit interaction energy. Derive Dirac's free particle in the presence of Electromagnetic field. Show that symmetry leads to a conservation using Noether's theorem? 	10 10 10	CO1 CO2 CO2	K1 K1 K1			

operators for a neutral scalar field.