Reg.					
No					

AR 23

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M. Sc. (Third Semester) Regular Examinations, December - 2024

22MTPC301 - Measure Theory and Integration

(M.Sc. Mathematics)

Time: 3 hrs Maximum: 70 Marks

(The figures in the right hand margin indicate marks ${\bf PART}-{\bf A}$		(2 x 10 = 20 Marks)			
Q.1. Answer <i>ALL</i> questions		CO#		Blooms Level	
a. Define field.		C	01	K1	
b. Define Countable additative measure over countable disjoint union set.		CO1		K2	
c. Prove that A is countable outer measure of A is zero		CO1		К3	
d. Prove that R is measurable set		CO2		К3	
e. Define Simple function of bounded set of finite measure		CO2		K2	
f. Define Chebychev's Inequality		CO2		K1	
g. Explain absolutely continuous functions.		CO3		K1	
h. Define Jordan's Theorem.		C	K1		
i. Define The Riesz-Fischer Theorem		CO4		K2	
j. State Holder Inequlity Theorem.		C	04	K1	
PART – B	(10	$(10 \times 5 = 50 \text{ Marks})$			
Answer ANY FIVE questions	Ma	arks	CO#	Blooms Level	
2. a. Prove that Union of two measurable sets is measurable.		5	CO1	K2	
b. The interval (a,∞)is measurable.		5	CO1	K2	
3.a. Let A be any set, and $E_1,, E_n$ a finite sequence of disjoin measurable sets. Then $m^*(A \cap [\bigcup_{i=1}^n E_i]) = \sum_{i=1}^n m^* (A \cap E_i)$.	3.	7	CO1	K2	
b. Prove that If $m^*A = 0$, then $m^*(A \cup B) = m^*B$		3	CO1	K2	
4.a. Let $\{A_n\}$ be a countable collection of sets of real numbers. Then $m^* (\cup A_n) \leq \sum m^* A_n$.		5	CO2	K2	
b. Let α be a constant and f and g two measurable real-valued functions defined on the same domain. Then the functions i. αf is a measurable on E ii. $\alpha f + \beta g$ is a measurable on E. iii. fg is a measurable on E		5	CO2	K2	
5.a. If f and g are nonnegative measurable function, then: i. $\int_E^{\cdot} \alpha f = \alpha \int_E^{\cdot} f \ \alpha > 0$. ii. $\int_E^{\cdot} (af + bg) = \alpha \int_E^{\cdot} f + \beta \int_E^{\cdot} g$. iii. If $f \leq g$ then $\int_E^{\cdot} f \leq \int_E^{\cdot} g$		5	CO2	К3	

b. Show that if f(x) = c, then for every partition P of [a, b], 5 CO2 К3 U(P,f) = L(P,f) = c(b-a)Hence f is Riemann integrable and $\int_a^b f(x)dx = c(b-a)$. 6.a Let f be defined and bounded on a measurable set E with mE finite. In order 5 CO3 K2 $\inf_{f \le \psi} \int_E^{\cdot} \psi(x) \, dx = \sup_{f \ge \varphi} \int_E^{\cdot} \varphi(x) \, dx$ For all simple function φ and ψ , I is necessary and sufficient that f be measurable b. State and prove Fatou's Lemma 5 CO3 K2 7. If the function f is monotone on the open interval [a, b]. Then f is 10 **CO3** Κ2 differentiable almost everywhere. The derivative f' is measurable, and $\int_{a}^{b} f(x) dx \le f(a) - f(b)$ State and prove the Minkowski Inequality 8 a. 5 CO4 K2 If p and q are nonnegative extended real number such that $\frac{1}{p} + \frac{1}{q} = 1$ and 5 CO4 К3 If $f \in L^p$ and $g \in L^p$, then $f, g \in L^1$ and $\int |f.g| = ||f||_p.||g||_p$ Equality holds if and only if for some constant α and β , not both are zero,

--- End of Paper ---

 $\alpha |f|^p = \tilde{\beta} |g|^q$

we have