Reg.						
No						ĺ

AY 23

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M. Sc. (Third Semester) Regular Examinations, December- 2024

22BTPC302- Emerging Technologies

(M.Sc. Biotechnology)

Time: 3 hrs			Maximum: 60 Marks								
(The figures in the right hand margin indicate marks.)											
	ART – A	(2 x 10	,								
Q.1.	Answer ALL questions	(CO#	Blooms Level							
a.	Write the principle of cryo electron microscopy.	C	01	K1							
b.	List two types of electromagnetic lenses in the SEM and their functions.	C	01	K2							
c.	Define chromophore. Give examples.	C	01	K1							
d.	Which part of the light microscope controls the intensity of light entering the	C	002	К3							
	viewing area?										
e.	Explain the role of reagent gasses in chemical ionization. Give example of reagen	t C	002	К3							
	gas.										
f.	State Köhler illumination.	C	002	K1							
g.	What is the role of gRNA in CRISPR mediated gene editing.	CO4		К3							
h.	Why different elements show unique sets of diffraction peaks?	CO3		K4							
i.	Define chemical shift.	CO3		K1							
j.	Give the molecular formula of hydrocarbon cation with an m/z value of 91.	CO2		K5							
PART – B		$(10 \times 5 = 50 \text{ Marks})$									
Ans	swer ANY FIVE questions	Marks	CO#	Blooms Level							
2. a	a. Discuss about the different light sources used in confocal microscopy.	5	CO2	К3							
t	b. Write short notes on Dichroic mirror and excitation filter.	5	CO1	K2							
3.8	a. What is fluorescence photobleaching? Describe briefly.	4	CO2	K1							
t	b. Add a note on image formation in compound microscope.	6	CO1	K2							
4. a	a. Describe the application and advantages of Nano LC-MS.	5	CO2	К3							
t	b. Explain the principle and application of imaging MS.	5	CO2	К3							
5.8	a. Explain the working principle and application of liquid state NMR.	5	CO3	К3							
ŀ	b. Write the principle and application of small angle X-ray scattering?	5	CO3	К3							
6. 8	a. Describe the principle behind Dark field microscopy with ray diagram.	5	CO1	К3							
t	o. Give the construction and working principle of Time of Flight Mass analyser.	5	CO2	К4							
7.8	a. Discuss about the machinery involved in CRISPER assisted gene editing.	5	CO4	К4							
t	b. Write note on application of CRISPR mediated gene editing.	5	CO4	K2							

- 8. a. Explain diagrammatically the difference between nanobodies and antibodies. 5 CO4 K2
 - b. Illustrate stepwise development of antibody by phage display method with 5 CO4 K3 diagram.