						_
Reg.						AY 24
No						

 H_2O .

theory.

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M. Sc. (First Semester - Regular) Examinations, February - 2025

24MCYPC11003 - Physical Chemistry - I

(Chemistry)

Time: 3 hrs Maximum: 60 Marks **Answer ALL questions** (The figures in the right hand margin indicate marks) PART - A $(2 \times 5 = 10 \text{ Marks})$ CO# Blooms Q.1. Answer **ALL** the questions Level The point group symmetry of the given structure is; CO₁ K2 What is degree of freedom and find the DOF for the following system: CO₂ K2 $H_2O(S) \longrightarrow H_2O(I) \longrightarrow H_2O(g)$ K2 If $\psi = \sin n\pi x / 1$, calculate its normalization constant. CO₃ What are the characteristics of Clanguage? CO₄ K2 The point group symmetry of CH₂=C=CH₂ is; CO₁ K2 PART - B $(10 \times 5 = 50 \text{ Marks})$ Marks CO# Blooms Answer *ALL* the questions Level CO1 2.a. Explain the "Great Orthogonality Theorem" using the example of water 7 K4 molecule. b. A molecule contains the following symmetry operations: E, 2C₆, 2C₃, C₂, 3 σd, 3 CO₁ K3 3 ov. Calculate the number of classes and order of the symmetry point group? (OR) The character table of C_{2v} point group is given below. In cis-butadiene molecule CO₁ 10 K4 the vibrational modes belonging to A₂ irreducible representation are IR inactive. What are the remaining IR active modes? C_{2v} E C_2 $\sigma_v(xz) \quad \sigma_v'(yz)$ 1 A_2 1 1 -1-1 B_1 1 xz1 B_2 vzCO₂ K4 Draw and discuss the phase diagram for one component system application to 10

(OR)

CO₃

CO₄

10

8

K4

K4

b. Derive all the wave function of butadiene system applying Huckel's MOT

4.a. Describe all types of looping structure with example.

Difference between Formal argument and actual Argument. 2 CO4 K3 (OR) CO3 c. Derive the wave function and Energy expression for particle in 3-D box 7 + 3K4 applying Schrodinger wave equation. Draw the wave probability plot for 2nd and 3rd excited state of particle in 1-D box. 5.a. Explain character table of BF₃ molecule. 8 CO1 K4 2 CO1 K2 b. Write the matrix representing a two-step transformation of a general point (x,y,z) rotation through 180° (about the z-axis) followed by reflection in yz mirror plane. Programme for Computer Vander Waal's constants 'a' and 'b' for a gas by CO4 K4 10 $a = \frac{PV^2}{n^2}, b = \frac{V}{n}$ 6.a. Draw and discuss the phase diagram for one component system application to CO2 K4 10 Sulphur. (OR) b. Prove that momentum operator is a Hermitian Operator. CO3 K4 7 c. If $\psi = e^{im\Phi}$ for rigid rotator (0<x<2 π) calculate its normalization constant. CO3 3 **K**3 --- End of Paper ---