Reg.						
No						

AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M. Sc. (First Semester - Regular) Examinations, February - 2025

24MCYPC11002 - Inorganic Chemistry - I

	(Chemistry)			
Time:	•	Maxim	um: 60	Marks
	Answer ALL questions			
DA.	(The figures in the right-hand margin indicate marks)	() E	10 Ma	
PA	RT - A	$(2 \times 5 =$	TU MI	irks)
Q.1. Answer <i>ALL</i> the questions			CO#	Blooms Level
a. Predict the bond order in N_2 molecule with the help of MO energy level diagram.				K2
	n normal spinel structure, MgAl ₂ O ₄ , the percentage of tetrahedral voids occupied		CO2	K2
c. (Calculate the electronic ground state term for 'Cr' ion in $[Cr (CN_6)]^{-4}$.		CO3	K2
d. What is radio carbon dating?				K1
e. I	Distinguish between an atom bomb and a hydrogen bomb.		CO5	K1
PART – B		10 x 5 =	arks)	
Answ	er ALL the questions	Marks	CO#	Blooms Level
2.a.	Discuss the VSEPR theory.	4	CO1	K1
b.	Illustrate carefully that VSEPR theory has to be combined with the concept of	6	CO1	K2
	hybridization to account for the geometry of covalent molecules. (OR)			
c.	Construct the wave functions for sp^2 .	10	CO1	K2
3.a.	What are the important limitations of valence bond theory?	4	CO2	K1
b.	Explain on the basis of valence bond theory that [Ni(CN) ₄] ⁻² ion with square	6	CO2	K1
	planner structure is diamagnetic and [NiCl ₄] ²⁻ ion with tetrahedral geometry is paramagnetic.			
	(OR)			
c.	Explain [Fe $(H_2O)_6$] ³⁺ is strongly paramagnetic whereas [Fe $(CN)_6$] ³⁻ is weakly paramagnetic.	5	CO2	K2
d.	Which complex has larger crystal field splitting: $[\text{Co } (\text{CN})_6]^{3-}$ or $[\text{Co } (\text{NH}_3)_6]^{3+}$	5	CO2	K1
4.a.	Write short note on metal to ligand charge transfer	5	CO3	K1
b.	Define magnetic susceptibility and its physical significance. (OR)	5	CO3	K2
c.	Draw and discuss the qualitative correlation diagrams for the following systems: d^{l} octahedral and d^{g} tetrahedral	5	CO3	K2
d.	Discuss the electronic spectra of $[Co (H_2O)_6]^{+2}$, $[FeCl_4]^{2-}$ and $[CoCl_4]^{2-}$.	6	CO3	K2
5.a.	Write short note on Nuclear Fission.	5	CO4	K2
b.	What is alpha decay?	5	CO4	K1
	(OR)			
c.	Write down the expression for the law of radioactivity	6	CO4	K1
d.	What is meant by disintegration constant?	4	CO4	K1
	•			

6.a.	Explain on the basis of valence bond theory that [Ni (CN) ₄] ⁻² ion with square	6	CO2	K1
	planner structure is diamagnetic and [NiCl ₄] ²⁻ ion with tetrahedral geometry is			
	paramagnetic.			
b.	Define crystal field stabilization energy. Calculate its value for the d^5 high spin	4	CO2	K2
	octahedral.			
	(OR)			
c.	What is valence bond theory?	2	CO1	K2
d.	Explain the potential energy diagram for H ₂ molecule.	8	CO1	K1
	End of Paper			