۸V	24
Αĭ	24

QP Code: R251G016 Reg. No

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M. Sc. (First Semester - Regular) Examinations, February - 2025

24MPHPC11004 - Quantum Mechanics - I

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions				
(The figures in the right hand margin indicate marks) PART – A			10 Ma	wlra)
		$(2 \times 5 =$	CO#	Blooms
Q.1. A	Answer ALL the questions			Level
	Difference between Hermitian and anti-Hermitian operators.		CO1	K2
	Define Hermitian Adjoint. State its properties.		CO1	K2
	Vrite Energy Eigen values of a harmonic oscillator		CO2	K1
	ind the matrix of [L ₊ , L ₋].		CO3	K2
e. L	Discuss the addition of two angular momenta.		CO4	K2
PAF	$PART - B ag{10 x 5} = 50 Ma$		arks)	
Answe	er ALL the questions	Marks	CO#	Blooms Level
2.a.	Define Kets, Bras and Bra-ket. Mention their properties with examples.	7	CO1	K2
b.	State Position – momentum commutation relation	3	CO1	K1
	(OR)			
c.	Explain Schmidt method of orthogonalisation. Find its general form.	10	CO1	K2
3.a.	Show that $\text{Tr}(\widehat{A}\widehat{B}) = \text{Tr}(\widehat{B}\widehat{A})$. Where $A = \begin{pmatrix} 8-2i & 4i & 0 \\ 1 & 1 & 1-i \\ -8 & i & 6i \end{pmatrix}, B = \begin{pmatrix} -i & 2 & 1-i \\ 6 & 1+i & 3i \\ 1 & 5+7i & 0 \end{pmatrix}$	7	CO1	K2
b.	Distinguish between dimension and basis of a vector space.	3	CO1	K1
	(OR)			
c.	State and explain expansion theorem.	5	CO1	K1
d.	Discuss the operator representation in matrix form.	5	CO2	K2
4.a.	Mention the Eigen values and Eigen functions of Lz and L ² .	3	CO3	K1
b.	Explain the matrix representation of orbital angular momentum operators.	7	CO4	K2
	(OR)			
c.	Obtain the commutation relation between the L^2 , L_Z , L_{\pm} , L_X , and L_Y	10	CO3	K2
5.a.	Show that $(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B}) = \vec{A} \cdot \vec{B} + i \vec{\sigma} \cdot (\vec{A} \times \vec{B})$	6	CO4	K2
b.	Mention the properties Pauli spin matrices.	4	CO4	K1
	(OR)			
c.	Show that Pauli matrices are Hermitian, traceless and have determinants equato -1.	ıl 3	CO4	K1
d.	Obtain eigen value equation in terms of spinors and operators S^2 and S_Z .	7	CO4	K1
6.a.	Define total angular momentum operator J with its properties and obtain the Eigen values of J_Z and J^2 .	e 4	CO4	K2
b.	Obtain C.G. coefficients matrix (only) in case of $J_1=1$ and $J_2=1/2$.	6	CO4	K2
	(OR)			
c.	Describe the matrix representations of total angular momentum J^2 , J_Z , J_{\pm} , J_Z and J_Y	ι, 10	CO4	K2
	End of Donor			

--- End of Paper ---