QP Code:	Reg.						AY 24

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M.Sc. (First Semester - Regular) Examinations, February - 2025

24MPHPC11001- MATHEMATICAL METHODS IN PHYSICS (PHYSICS)

Time: 3 hrs Maximum: 60 Marks **Answer ALL questions** (The figures in the right hand margin indicate marks) PART - A $(2 \times 5 = 10 \text{ Marks})$ Blooms Q.1. Answer ALL questions Level Define removable isolated singularity. CO1 **K**1 Find the value of 'a' for which $f(x,y) = 9x + 6(x^2-y^2) + 5i(3xy + ay)$ is analytic? CO₁ K2 Write on symmetric tensor. CO₂ **K**1 Show the graph for Bessel polynomial $J_0(x)$ and $J_1(x)$? CO₄ K2 Write any three properties of gamma functions. CO₆ **K**1 PART - B $(10 \times 5 = 50 \text{ Marks})$ CO# Blooms Answer **ALL** the questions Level 2. a. Define Harmonic function. State and Prove Laurent series. 10 CO₁ **K**1 Find the residue of f (z) = $\frac{z}{(2z-4)(3z-5)}$ at z = ∞ . Explain about different types of 10 CO₁ **K**1 singularity. Derive an expression for Direction cosines in Tensor using rectangular coordinate 3.a. 10 CO₂ **K**1 system. (OR) b. Show that if A_i and B_j are the components of a contravariant and covariant tensor 7 CO₂ **K**1 of rank one $C_{ij} = A_i B_j$ are the components of mixed tensor of rank two. Define Christoffel symbol. 3 CO₂ **K**1 4.a. Prove that the set $\{2^n : n \in Z\}$ with multiplication operation is an abelian group. 10 CO₃ K2 (OR) Show that the number of irreducible representation of an Abelian group equals to 7 CO₃ K2 the number of group elements. c. Prove that if every element of a group 'G' be its own inverse, then 'G' is abelian. 3 CO₃ **K**1 Prove that $\int_{-1}^{1} \frac{P_{n}(x)}{\sqrt{(1-2xt+t^{2})}} dx = \frac{2t^{n}}{2n+1}$ where n is a positive integer. 10 CO₄ K2 b. Evaluate the Legendre polynomials Po(x), $P_1(x)$, $P_2(x)$ and $P_3(x)$. Show all the 10 CO₄ **K**1 Legendre polynomials in a single graph. 6.a. Evaluate $\int_0^\infty \frac{x^7}{7^x} dx$ 10 CO₅ K2 (OR) b. Show that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$ 10 CO₅ K2

Page 1 of 1

--- End of Paper ---