	 				,	•
Reg.						AY 24
No						

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, **GUNUPUR**

(GIET UNIVERSITY)

M.Sc. (First Semester - Regular) Examinations, February - 2025

24MPCMA11002 – Real Analysis

	(Mathematics)				
Time	: 3 hrs	Maximum: 60 Marks			
	Answer ALL questions				
PA	(The figures in the right hand margin indicate marks) RT – A	$(2 \times 5 = 10 \text{ Marks})$			
Q.1. A	Answer ALL questions		CO#	Blooms Level	
a.]	s every bounded sequence convergent? Justify your answer.		CO1	K1	
b. 7	The series $\sum_{n=1}^{\infty} (1 + \frac{1}{n})$ is convergent or divergent.		CO2	K2	
c.]	Examine the convergence of $\int_0^1 \frac{dx}{\sqrt{(1-x)}}$.		CO2	K2	
d.]	Find the pointwise convergence of sequence of function $f_n(x) = \frac{x^{2n}}{1+x^{2n}}$.		CO2	K2	
	Define Directional Derivative.		CO1	K1	
PA	RT – B	$(10 \times 5 = 50 \text{ M})$		arks)	
Answ	er ALL the questions	Marks	CO#	Blooms Level	
2. a.	State and Prove Cauchy Completeness Principle Theorem.	5	CO2	K1	
b.	Test $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ is absolute convergent.	5	CO1	K1	
	(OR)				
c.	Prove that the series $\sum \frac{1}{n!} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!} + \cdots$ convergent to the value e.	10	CO1	K2	
3.a.	State and Prove Intermediate Value Theorem.	5	CO2	K1	
b.	Show that the function $f(x)=1/x$ is not uniformly continuous on $]0,1]$.	5	CO2	K2	
	(OR)				
c.	A function f is defined on R by				
	$f(x) = \begin{cases} -x^2 & \text{if } x \le 0 \\ 5x - 4 & \text{if } 0 < x \le 1 \\ 4x^2 - 3x & \text{if } 1 < x < 2 \\ 3x + 4 & \text{if } x \ge 2 \end{cases}$ Examine f for continuity at x=0,1,2. Also discuss the kind of discontinuity, if any.	7	CO3	КЗ	
d.	Let (x_n) , (y_n) be two sequences. Define two other sequences by M_n =max $\{x_n,y_n\}$, $\forall n \in z^+$. suppose $\log_{n\to\infty} x_n$ and $\log_{n\to\infty} y_n$ both exist. Then shows that both $\lim M_n$ and $\lim m_n$ exist.		CO3	К3	
4.a	For what value of m, n is the integral $\int_0^1 x^{m-1} (1-x)^{n-1} \log x dx$ convergent. (OR)	10	CO4	K2	
b.	Show that, a) $\int_0^1 \frac{\log x}{\sqrt{x}} dx$ is convergent, but b) $\int_1^2 \frac{\sqrt{x}}{\log x} dx$ is divergent.	10	CO4	K2	
5.a.	Test for uniform convergence, the sequence $\langle f_n(\mathbf{x}) \rangle$, where $f_n(\mathbf{x}) = 1 - \frac{x^n}{n}$, [0,1].	10	CO3	K2	

(OR)

b.	State and Prove Weierstrass Approximation Theorem.	10	CO2	K1
6.a.	State and Prove Taylor Theorem.	10	CO2	K1
	(OR)			
b.	Find $\frac{dy}{dx}$ when $y^{x^y} = \sin x$.	5	CO5	К3
c.	Find $\frac{\partial w}{\partial \theta}$ and $\frac{\partial w}{\partial \phi}$ given that $w(x,y,z)=f(x^2+y^2+z^2)$ where $x=r\cos\theta.\cos\phi$, $y=r\cos\theta.\sin\phi$, $z=r\sin\theta$.		CO5	К3

--- End of Paper ---