QP Code: R251G018	Reg.						AY 24

 $\boldsymbol{PART-A}$

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M. Sc. (First Semester - Regular) Examinations, February - 2025

24MPCMA11004 -Ordinary Differential Equations

 $(2 \times 5 = 10 \text{ Marks})$

Time: 3 hrs Maximum: 60 Marks

Answer ALL questions

(The figures in the right hand margin indicate marks)

1	ARI - A	(2 X 3 -	TU Ma	i KS)
Q.1.	Answer ALL the questions		CO#	Blooms Level
a.	Define Lipschitz condition for function of two variables.		CO1	K1
b.	Are the functions e^x , $\sin x$, $\cos x$ linearly independent or dependent? Justify your as	nswer.	CO2	K2
c.	Find $P_5(x)$ by Rodrigues formula.		CO2	K2
d.	d. Define Analytic function. Give an example of singular and regular points of a differential equation.			
e.	When the second order differential equation $x'' = f(t, x, x')$ is called oscillator non-oscillatory.	ry and	CO4	K2
P	ART - B	$(10 \times 5 =$	= 50 Ma	rks)
Ans	wer ALL the questions	Marks	CO#	Blooms Level
2.a	a. State the Picard's theorem for existence and uniqueness of solution by Picard's successive approximation method.	3	CO1	К3
b	Find the solution of following IVP $\dot{x} = -x(t)$; $x(0) = 1$, $t > 0$ by Picard's succussive approximation.	7	CO1	K3
	(OR)			
C	2. Is $f(t,x) = x^{1/2}$ satisfy Lipschitz condition on R . (i) = $\{(t,x): t \le 2, x \le 2\}$ (ii) = $\{(t,x): t \le 2, 2 \le x \le 4\}$.	5	CO1	K3
d	1. Prove that, let $I \subset \mathbb{R}$ be an interval. A continuous function $x: I \to R$ is a solution	5	CO1	K3
	of IVP $x(t) = f(t, x(t))$; $x(t_0) = x_0$ on interval I if and only if x is a solution of $x(t) = x_0 + \int_{t_0}^{t} f(s, x(s)) ds$.			
2	• 0	_	CO2	170
3.a	independent. Also show that their Wronskian is zero.	5	CO2	K2
b	Solve $x^2y'' + 0.6xy' + 16.04y = 0$.	5	CO2	K2
	(OR)			
C	Solve $y'' + 2y' - 35y = 12e^{5x} + 37\sin 5x$ by method of undetermined coefficients.	7	CO2	K2
d	I. Solve $y'' + 6y' + 5y = 0$.	3	CO2	K2
4. a	Find the power series solution of $(1 - x^2)y'' - 2xy' + 20y = 0$ in powers of x .	7	CO 3	K3
b	What are the singular and ordinary points of differential equation $(1 - x^2)y'' - 2xy' + 20y = 0$.	3	CO3	К3
	(OR)			
C	Find the power series solution of $y'' - 4xy' + (4x^2 - 2)y = 0$ in powers of x.	7	CO3	K3
d		3	CO3	K3
5.a	n. Prove that Strum's comparison theorem. That is, let r_1, r_2 and p be continuous	10	CO4	K4

functions on (a,b) and p>0. Assume that x and y are real solutions of $(px')'+r_1x=0$ and $(py')'+r_2y=0$ respectively on (a,b). If $r_2(t)>r_1(t)$, for $t\in(a,b)$ then between any two consecutive zeros t_1,t_2 of $x\in(a,b)$, there exist a non-zero of y in $[t_1,t_2]$. Moreover, when $r_1\equiv r_2$ in $[t_1,t_2]$, the conclusion still holds if x and y are linearly independent.

(OR)

b.	Find the solution for Legendre's equation $(1 - x^2)y'' - 2xy' + 12y = 0$.	7	CO4	K4
c.	State Strum's separation theorem.	3	CO4	K2
6.a.	Define (i) Green's Function and (ii) Prove that Green's function is symmetric.	10	CO5	K3
	(OR)			
b.	Solve the IVP $8y'' - 6y' + y = 6 \cos hx$, $y(0) = 0.2$ and $y'(0) = 0.05$.	10	CO5	K3
	End of Paper			