Reg.						AY 24
No						

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

M. Sc. (First Semester - Regular) Examinations, February - 2025

24MTPC1003 - NUMERICAL ANALYSIS

No

Time: 3 hrs	Maxim	um: 60	Marks								
Answer ALL questions											
(The figures in the right hand margin indicate marks) $ PART - A $ (2 x 5 = 1											
PARI - A	$(2 \times 5 =$	$(2 \times 5 = 10 \text{ Marks})$									
Q.1. Answer <i>ALL</i> the questions		CO#	Blooms Level								
a. What is the formula for Regula-Falsi Method.		C01	K 1								
b. Find the Lagrange's interpolating polynomial of the data $f(0)=1$, $f(1)=3$, $f(3)=55$;	C02	K2								
c. Write the Formula for Simpson's Three-Eight rule		C01	K1								
d. What is the Disadvantage of Multistep Method		C02	K1								
e. Explain about Classification of PDE With an example		C02	K2								
PART – B	$(10 \times 5 =$	$(10 \times 5 = 50 \text{ Marks})$									
Answer ALL the questions	Marks	CO#	Blooms Level								
2.a. Find a Root of an Equation of $x^3 = 6x-4$. Correct up to 2 decimal places by using Bisection method.	5	C03	K3								
b. Solve $4x+2y+z=14$, $x+y+8z=20$, $x+5y-z=10$ by using Gauss -Seidel Method	. 5	C04	К3								
(OR) c. Find a Root of cosx=3x-1 correct up to 3 decimal places by Fixed Point Iteration	on 5	C03	К3								
Method.	11	000	110								
d. Solve the system by LU Decomposition Method	5	C04	К3								
3x-6y-3z=-3, 2x+6z=-22, -4x+7y+4z=3. 3.a. Estimate f(-0.5) and f(0.5) by Hermite Interpolation Formula, From the given	10	C03	K3								
data											
x -1 0 1											
F(x) 1 1 3											
F'(x) -5 1 7											
(OR)	10	G0.4	***								
b. Obtain the Piecewise Linear Interpolation for the function f(x). Also find f(7)	10	C03	K3								
$\begin{array}{ c c c c c c c c c }\hline X & 1 & 2 & 4 & 8 \\ \hline Y = f(x) & 3 & 7 & 21 & 73 \\ \hline \end{array}$											
4.a. Evaluate $I = \int_0^1 \frac{1}{1+x} dx$ by Simpson rule & Romberg's method	10	C04	К3								
Evaluate $1 - \int_0^\infty \frac{dx}{1+x} dx$ by Simpson Tule & Romoerg's method (OR)											
b. Evaluate f ¹ (3) by Richardson's Extrapolation method & Central Difference formula, From the following table	10	C04	K3								
x 1 2 3 4 5 6											
	4.0	G0.7	***								
5.a. Estimate y (0.4) for the Initial value problem $y^1 = -2xy^2$ & y(0)=0. by Milne Simson's predictor-Corrector formula	e- 10	C05	К3								
Simson's predictor-corrector formula											

(OR)

10

C05

K3

b. Using Range –Kutta Method (R-K METHOD)

Find y(0.2) and y(0.4) Given $y^1 = x + y$, y(0) = 1

6.a. Solve the Equation $U_{xx} = U_t$ subject to U(x,0) = 0; U(0,t) = 0 & 10 C06 K3 U(1,t) = t for two time steps , by Crank –Nicholson Method

(OR)

b. Solve $U_{xx}=2U_t$ Given U(x,0)=0; U(0,t)=0 & U(1,t)=t & 10 C06 K3 U(x,0)=x(x-4). find the values of U up to t=5 assume h=1 by Bender-Schmidt Formula

--- End of Paper ---