QP Code: R251G020	Reg.					
	NI.					l

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

AY 24

M. Sc. (First Semester - Regular) Examinations, February - 2025

24MLSPC11004 - Molecular Biology and Instrumental Techniques (Life Science)

Time:	Time: 3 hrs		Maximum: 60 Marks			
	Answer ALL questions					
PΛ	(The figures in the right hand margin indicate marks) RT – A	(2 x 5 -	10 Mg	rke)		
IA	NI - A	$(2 \times 5 = 10 \text{ Marks})$				
Q.1. A	Answer ALL the questions		CO#	Blooms Level		
a. I	Draw the structure of histone association with DNA.		CO1	K2		
b. I	Differentiate between monocistronic and polycistronic mRNA.		CO1	K2		
c. I	How the stability of m-RNA can be maintained?		CO2	K2		
d. I	Define Beer's and Lambert' law.		CO3	K1		
e. I	Differentiate between mobile phase and stationary phase.		CO4	K2		
PAI	RT - B	$(10 \times 5 =$	50 M	arks)		
Answ	er ALL the questions	Marks	CO#	Blooms		
	-	5	CO1	Level K2		
2.a.	Discuss with diagram of Harshay and Chase experiment and its conclusion.		CO1	K2		
b.	Discuss with diagram of Hershey and Chase experiment and its conclusion.	5	COI	IX2		
	(OR)	_	COL	W2		
c.	Discuss the initiation event of replication in prokaryotes with proper diagram.	5 ~	CO2	K2		
d.	Explain the Cot curve analysis with diagram.	5	CO1	K1		
3.a.	Discuss the genome organization of eukaryotes.	5	CO1	K2		
b.	Define C-Value? Discuss C-Value paradox with suitable diagram.	5	CO1	K1		
	(OR)					
c.	Explain the process of nucleotide excision repair with diagram.	5	CO2	K2		
d.	Explain the mechanism of initiation of transcription in prokaryotes.	5	CO2	K3		
4.a.	Discuss the process of mismatch repair with suitable diagram.	5	CO2	K2		
b.	Diagrammatically explain process of Polyadenylation.	5	CO2	K3		
	(OR)					
c.	Illustrate in details about the role of snRNPs during splicing mechanism with suitable diagram.	ı 5	CO2	К3		
d.	Write down the process of RNA editing with examples.	5	CO3	K1		
5.a.	What is Spectroscopy? Explain the principle and instrumentation of UV-Visible Spectrophotometry.	10	CO4	K1		
	(OR)					
b.	Explain in details about the principle and instrumentation of Phase contrast microscopy.	t 10	CO4	K1		
6.a.	What is Chromatography? Explain the principle and instrumentation of HPLC. (OR)	10	CO4	K1		
b.	Explain the principle and instrumentation of Gas chromatography.	10	CO4	K 1		
υ.	2.17. and principle and instrumentation of our emolitatography.	10				

--- End of Paper ---