۸	v	24	
A	. 1	7.4	

Reg. No

memory.

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B.C.A (Second Semester) Regular Examinations, May - 2025

BCA23201 - Data Structures

(BCA)

Time: 3hrs Maximum: 60 Marks

(The figures in the right hand margin indicate marks)

PART – A		$(2 \times 5 = 10 \text{ Marks})$		
Q.1. Answer <i>ALL</i> questions	CO#	Blooms Level		
a. Show that $n^2 + 50n = O(n^2)$.	CO1	K2		
b. List four benefits of using Insertion Sort.	CO2	K1		
c. Define a doubly linked list with suitable diagram.	CO3	K2		
d. Consider the graph given below and show its adjacency list in	CO4	K3		

e. Write short notes on linear probing.

PART – B (10 x5=50 Marks)

Answer ALL questions		Marks	CO#	Blooms Level
2. a.	List the different types of operations performed in an array. Write algorithms for insertion and deletion in an array.	5	CO1	K3
b.	Write an algorithm to implement insertion and deletion in a queue. Explain the conditions for queue overflow and underflow.	5	CO1	K3
	(OR)			
c.	Consider a $20x5$ 2D array A with its base address = 1000 and the size of an element = 2. Compute the address of the element A[18][4] in row and column major order.	5	CO1	K2
d.	Convert the following infix expression into postfix expression using stack.	5	CO1	K2
u.	A – $(B/C + (D \% E * F)/G) * H$	Ü	001	
3.a.	Sort the following elements using merge sort.	5	CO2	K3
	77, 49, 25, 12, 9, 33, 56, 81			
b.	Sort the array given below using selection sort.	5	CO2	K3
	39 9 81 45 90 27 72 18			
	(OR)			
c.	Write an algorithm to search an element in an array using binary search.	5	CO2	K3
d.	Explain the Bubble Sort technique for sorting an array. Write the algorithm to	5	CO2	K3
	implement Bubble Sort.			
4.a.	Define a doubly linked list with suitable diagram. Explain the differences between singly and doubly linked lists concerning their structure, operations, and advantages.	5	CO3	K2
b.	Illustrate an algorithm to search for a value in an existing linked list.	5	CO3	K3

(OR)

	(OH)			
c.	Illustrate an algorithm to insert an element at the beginning of a linked list.	5	CO3	K3
d.	Explain the algorithm to delete a node from the end of a singly linked list.	5	CO3	K3
5.a.	Create a binary search tree with the input given below and show all the steps.	10	CO4	K4
	98, 2, 48, 12, 56, 32, 4, 67, 23, 87, 77, 55, 46, 10			
	Provide the sequence of nodes that will be visited using:			
	i. In-order traversal			
	ii. Pre-order traversal			
	iii. Post-order traversal			
	(OR)			
b.	Construct an AVL tree using the following sequence.	10	CO4	K4
	16, 27, 9, 11, 36, 54, 81, 63, 72, 45			
6.a.	Consider a hash table of size 10. Using linear probing, insert the keys 72, 27,	5	CO5	K3
	36, 24, 63, 81, 92, and 101 into the table.			
b.	Insert the keys 7, 24, 18, 52, 36, 54, 11, and 23 in a chained hash table of 9	5	CO5	K3
	memory locations. Use $h(k) = k \mod m$.			
	(OR)			
c.	Consider the graph G given below. Suppose we want to print all the	5	CO5	K4
	nodes that can be reached from node H. One alternative is to use			
	a depth-first search of G starting at node H.			
	$(B) \leftarrow (C) \leftarrow (D)$			
a	Explain the characteristics of a good heat function Highlight the least difference	5	CO5	W2
d.	Explain the characteristics of a good hash function. Highlight the key difference	5	CO5	K3
	between open addressing and chaining in hashing.			

--- End of Paper ---