Reg.						
No						

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Sixth Semester - Regular/Supplementary) Examinations, April 2025 21BCHPC36003/22BCHPC36003 – Chemical Reaction Engineering-II

Time: 3 hrs

PART – A

(Chemical Engineering)

Maximum: 70 Marks

Answer ALL questions (The figures in the right hand margin indicate marks)

 $(2 \times 5 = 10 \text{ Marks})$

Blooms

Level

К1

К4

Q.1. Answer ALL questions								
a.	What is the purpose of evaluating the Residence Time Distribution (RTD) in a chemical reactor?	CO1	K1					
b.	Compare the advantages of heterogeneous catalysis over homogeneous catalysis.	CO2	К2					
c.	Explain the function of a catalyst in a chemical reaction.	CO2	К2					
d.	Identify the reasons for catalyst deactivation in catalytic reactions.	CO1	КЗ					
e.	List two examples of fluid-particle reactions without change in particle size.	CO1	K1					

PART – B

Answer All the questions

2. a. Define Dirac-delta function. What is the value of $\int_2^4 \delta(t-3) t^3 dt$

b. A pulse of tracer was injected into a reactor and the effluent concentration was CO2 К4 12 measured as a function of time. The resulting data are given in the table below:

t, min	0	1	2	3	4	5	6	7	8	9	10	12	14
C, g/m ³	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

Construct C-curve and E-curve and calculate the following:

- (a) Fraction of material leaving the reactor that has spent between 3 and 6 minutes in the reactor
- (b) Mean residence time of the reactor.
- (c) Fraction of material leaving the reactor that has spent 3 min or less in the reactor.

(OR)

c. Calculate the mean residence time and variance of the tracer. A sample of tracer CO2 10 hytane was injected as a pulse to a tracer and the effluent concentration measured as a function of time, resulting the following data:

t, min	0	1	2	3	4	5	6	7	8	9	10	12	14
C, g/m ³	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0

d. Write the advantages and disadvantages of step input method for calculating CO1 K2 5 RTD.

- 3.a. Find the rate expression for coal combustion process $C + O_2(g) \rightarrow CO_2(g)$ CO3 8 К4 assuming first order irreversible reaction
- b. Write the steps of mechanism of solid catalysed reaction by showing in a diagram. 7 CO1 К1

(15 x 4 = 60 Marks)

CO #

CO1

Marks

3

			(OR)					
c.	The decomposit	ne presence of Pt	10	CO2	КЗ			
	as catalyst. Wi	imited reaction.						
	Develop the rat	ce reaction rate						
	controlling.							
d.	Describe the me	eaction.	5	CO3	КЗ			
4.a.	Derive the expr	ression for the c	concentration pr	rofile inside the	porous catalyst	10	CO2	К3
	considering cyli	ndrical pore and	first order react	tion				
b.	Explain the non	-isothermal cond	dition developed	d during the read	tion in a porous	5	CO1	K2
	catalyst. Write	the expression	for temperature	e difference in	film and within			
	particle.							
			(OR)					
c.		~		0	arious amount of	10	CO2	К4
	•	concentration of						
	A in the effluent							
	Run	4						
	C _{Ain} , mol/lit	0.02	0.04	0.08	0.16			
	C _{Aout} , mol/lit	0.074	0.060	0.044	0.029			
		equation to re	present this rea	iction using inte	egral method of			
L.	analysis	a the notes from	-	CO1	V 2			
d.	Differentiate dif	g the rates from	5	CO1	К2			
5 0	experimental da	a reaction? How	0	CO1	КЗ			
5.a.	What are the diff will it be selecte	le reaction? now	8	001	КЭ			
b.	Derive the perf		on relating tim	e with radius	and conversion	7	CO3	К4
υ.	-	-	-		core model of	/	605	КŦ
	unchanging size	-	-	or in similarity	core moder or			
	unenunging bize	for spherical pa	(OR)					
c.	What are the st	ens of successio	. ,	ion in shrinking	core model for	5	CO1	К1
ς.	spherical particle	-	-	ion in sinning		5		
d.	Derive the perf			e with radius	and conversion	10	CO3	К4
	_	_	-		unchanging size			-
	for spherical par							
	prioriour pur		End of	Domon				

--- End of Paper ---