Reg.					
No					

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Sixth Semester – Regular/ Supplementary) Examinations, April 2025 21BCHPE36011/22BCHPE36011 –Process Modelling Simulation

(Chemical Engineering)

Time: 3 hrs

Maximum: 70 Marks

1		VIAAIIIIUII	1. 70 1010	aiKS	
	Answer ALL questions				
Р	(The figures in the right hand margin indicate marks) ART – A	(2 x 5 = 10 Marks)			
	Answer ALL questions	(2 A 0 -	CO #	Blooms	
a.	Differentiate between semi-batch and batch reactor.		CO1	Level K2	
b.	Define modularity.		CO4	K1	
с.	Differentiate between sequential and equation oriented modular approach.		CO4	K2	
d.	State the equation of motion.		CO2	K1	
e.	Briefly explain the importance of optimization of a model?		CO1	K2	
PA	$\mathbf{A}\mathbf{R}\mathbf{T} - \mathbf{B}$	(15 x 4 = 60 Marks)			
Ansy	wer <i>all</i> the questions	Marks	CO #	Blooms	
2. a		10	CO1	Level K5	
b	• Explain the mathematical model for continuity equation. (OR)	5	CO1	K5	
с	• Derive the mathematical model for energy equation.	8	CO2	K1	
d		7	CO1	K2	
3.a	Explain the design equation for a CSTR with first-order non-isothermal consecutive, simultaneous & reversible reactions.	10	CO2	K2	
b	Derive the mathematical model for variable hold up multi stage CSTR in isothermal condition.	5	CO1	К3	
	(OR)				
с		10	CO1	K4	
d	Derive the mathematical model for variable hold up multi stage CSTR in isothermal condition.	5	CO2	K3	
4.a	Solve the following LPP using simplex method.	8	CO3	K3	
	Max $Z = X_1 + X_2 + 3X_3$				
	Subject to,				
	$3X_1 + 2X_2 + X_3 \le 3$				
	$2X_1 + X_2 + 2X_3 \le 2$				
	$X_1, X_2, X_3 \ge 0$				
b	2	7	CO3	K3	
	Max Z=8X+2Y				
	Subject to,				
	$X+Y \leq 7$,				
	$X-2Y \leq 3$				
	where X, $Y \ge 0$				

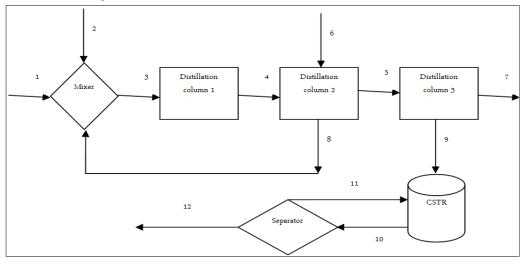
- c. Find the root of the equation sinx-coshx+1=0, correct to 4 decimal places, using 8 CO3 K3 Regula falsi method. The root lies between 1 & 2.
- d. Solve by Fibonacci Method, f(x)Min= x²-2x, 0<x<1.5, resolution: 0.25, N=4, 7 CO3 K3 A=0, B=1.5

6

9

CO4

CO3


K2

K3

- 5.a. Define Mante-Carlo simulation & write the steps for formulating problem.
- b. A manufacturing company keeps stock of a special product. Previous experience indicates the daily demand as given below. Simulate the demand for next 10 days. Find the daily average demand for the product on the basis of simulated data.

Daily demand	5	10	15	20	25	30		
Probability	0.01	0.2	0.15	0.5	0.12	0.02		
(OR)								

- c. Encode the following information flow diagram with the following matrices 15 CO4 K3
 - i. Process matrix
 - ii. Stream Connection matrix
 - iii. Incidence matrix
 - iv. Adjacency matrix
 - v. Recycle set

--- End of Paper ---