~	_	 1	1	1	1	1	1	1	1	A D 01 /00
Code: RA22BTECH420	Reg.									AR21/22

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

QP

B. Tech.(Sixth Semester - Regular/Supplementary) Examinations, April 2025 **21BMEPC36003/22BMEPC36003 - Production and Operations Management** (Mechanical Engineering)

EXCELLENCE - DUE GRAPHICE				(Me	cnamea	Engin	ieering	3)			
Time:	3 hrs							M	aximum	: 70 Ma	arks
		(The figure	s in the	right	hand ma	argin in	dicate	marks)			
PART	$-\mathbf{A}$								$(2 \times 5 =$: 10 Ma	arks)
Q.1. Ansv	wer ALL questio	ons								CO#	Blooms Level
a. List	various symbols	used in oper	ation pr	ocess	chart.					CO1	K1
b. Expl	lain the main pur	rpose of meth	od stud	y in ir	idustrial e	engineer	ring.			CO1	K2
c. Expl	lain the concept	of forecasting	g error a	nd giv	ve an exa	mple.				CO2	K2
d. Men	tion the importa	nce of Safety	stock in	n Inve	ntory.					CO3	K1
e. Expl	lain the term "se	quencing" in	the con	text o	f operatio	ns sche	duling.			CO4	K2
PART	$-\mathbf{B}$								(15 x 4=	arks)	
Answer A	the questions	1							Marks	CO#	Blooms Level
2. a. W	hat is multiple a	ctivity chart?	Illustra	te it w	ith an ex	ample.			8	CO1	K1
b. Ex	xplain about the	different proc	ess tech	nolog	gies.				7	CO1	K2
			(OR)								
	n 8 hrs work mea		dy in a	plant	reveals th	e follov	ving-				
	Unit produced= 320										
	Idle time= 15% Performance rating= 120%									CO1	K3
	allowance= 12% of normal time										
	etermine the stan			oduce	ed.						
d. A	work sampling s	study is to be	made fo	or a ty	pist. It is	felt tha	t typist	is idle 30%			
of	the time. How	many observ	ations s	should	be made	e in ord	er to h	ave 95% of	7	CO1	K3
	nfidence so that										
	tential location	· ·									
	anufacturing a p					-					
	onomical location termine the optime						per ye	ar and also	1		
ac	Site	Fixed cost			Variab	8	CO2	К3			
	A	650			120				O	CO2	KS
	В	750			56						
	С	55(
b. A	firm believes that			ends o	n its exne	425	s for re	 search The			
	formation for the	_	_		_						
	e expenditure is	_	n yours	··· 6· ·	ch colo w	· Louin	are the j	prome when			
	Year		1	2	3	4	5	6	7	CO2	K3
	Expendi		2	3	5	4	11	5			
	Annual pr		20	25	34	30	40	31			
<u> </u>			(OR)			ı					
		. ~ .									

10

CO₂

K1

c. What are the factors influencing the plant and warehouse locations selection?

Explain any one facility location selection model.

- Discuss the merits and demerits of process layout and product layout. 5 CO₂ **K**2 List and explain the various pure strategies and mixed strategies. 8 CO3 K2 What is Material Requirement Planning. State its objective and function. 7 CO3 b. K1
 - The store of an oil engine repair shop has 10 items whose details are shown in the following table. Apply ABC analysis to the store.

Component	Description	Price/unit	Units/year
code			
C01	Packing thread	100	100
C02	Tower bolt	200	300
CO3	Hexagonal nut	50	700
CO4	Bush	300	400
CO5	Coupling	500	1000
CO6	Bearings (Big)	3000	30
CO7	Bearing (Small)	1000	100
CO8	FUEL PUMP	7000	500
CO9	Fixture	5000	105
CO10	Drill bit	60	1000

- The demand for an item is 18000per year. Its production rate is 1000 per month. The carrying cost is Rs. 0.15/unit/month and the set-up cost is Rs. 500 per set-up. 7 CO₃ **K**3 The shortage cost is Rs. 20per unit per year. Find the various parameters for inventory system.
- 5.a. Consider the following two machines and six jobs flow shop scheduling problem. Using Johnson's alogorithm, obtain the optimal sequence which will minimize the make span and also calculate the idle time for each machine.

Job (i)	Machine 1	Machine 2
1	5	4
2	2	3
3	13	14
4	10	1
5	8	9
6	12	11

Write short notes on ISO9000.

5 CO₄ **K**1

CO₄

K3

10

10

8

CO₃

K3

- A small engineering project consists of 9 activities. Three time estimates for each activity are given in table.
 - (i) Draw the network diagram and mark t_e an each activity.

(OR)

- (ii) Calculate EST and LFT and mark them on the network diagram.
- (iii) Find the length of critical paths or the total project duration.

Activity	1-2	1-6	2-3	2-4	3-5	4-5	6-7	5-8	7-8
Time									
T_0	2	2	5	1	5	2	3	2	7
T _m	5	5	11	4	11	5	9	2	13
Тр	14	8	29	7	17	14	27	8	31

d. State the differences between PERT and CPM.

5 CO₄ K2

CO₄

K3

--- End of Paper ---