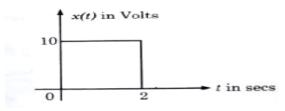
QP Code: RA22BTECH419

Reg.]
No						

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Sixth Semester – Regular/Supplementary) Examinations, April 2025 21BEEPC36003/22BEEPC36003– Communication Engineering (EEE)

Maximum: 70 Marks


Answer ALL questions (The figures in the right-hand margin indicate marks)

$\mathbf{PART} - \mathbf{A} \tag{2 x}$			5 = 10 Marks)		
Q.1.	. Answer ALL questions	CO #	Blooms Level		
a.	State the time shifting property of Fourier Transform.	CO1	K1		
b.	Define Pulse Amplitude Modulation with waveform.	CO3	K1		
c.	What is external noise? How can you classify external noise.	CO4	K2		
d.	Determine the frequency of the modulating signal which is producing an FM s	signal ^{CO4}	K3		
	having a bandwidth of 50 kHz when the frequency deviation of the FM signal is 10 k	τHz.			
e.	What is Carson's Rule?	CO2	K2		

PART – B

(15 x 4 = 60 Marks)

Answ	er All the questions	Marks	CO#	Blooms Level
2. a.	Obtain the Fourier transform of a rectangular pulse of duration 2 seconds and	8	CO1	K2
	having magnitude of 10 volts as shown in figure.			

b.	Describe the time-domain and frequency-domain representations of DSB-SC	7	CO2	K2
	signals.			
	(OR)			
c.	Differentiate between amplitude, frequency, and phase modulation. With neat	8	CO2	K2
	diagram.			
d.	Derive the mathematical expression for a single-tone amplitude modulated	7	CO3	K3
	(AM) wave.			
3.a.	Explain the process of coherent detection used to recover the original signal	8	CO2	K3
	from a DSB-SC modulated wave.			
b.	Draw the frequency spectrum of an SSB-SC transmission and provide a clear	7	CO3	K3
	diagram that explains how it is demodulated.			
	(OR)			
c.	Discuss the various types of noise that affect communication systems. How are	8	CO4	K4
	these noises modelled mathematically?			
d.	Compare different pulse modulation techniques: Pulse Amplitude Modulation	7	CO3	K2
	(PAM) and Pulse Time Modulation (PTM).			
			~~ (
4.a.	Draw the circuit diagram of varactor diode modulator and explain its working.	8	CO4	K2

b.	Describe the working of a Balanced Modulator for generating DSB-SC waves. (OR)		CO3	K2
c.	A single-tone frequency modulated (FM) signal is given by: $v(t) = 10 \times sin (16\pi \times 10^6 t + 20 sin 2\pi \times 10^3 t)$ volts Determine the following parameters:	8	CO4	K3
	i. Carrier frequency (fc) ii. Modulating frequency (fm) iii. Modulation index (β) iv. Frequency deviation (Δ f)			
d.	Describe mathematical model for communication channel and their significance.	7	CO4	K2
5.a.	Explain the operation of a superheterodyne receiver using a clear block diagram. How does FM detection use it?	8	CO5	K2
b.	The antenna current of an AM transmitter is 8 A, if only the carrier signal is sent, but it increases to 8.93 A, if the carrier is modulated by a single sinusoidal wave. Determine the percentage modulation. Also find the total current if the percent of modulation changes to 0.8.			К3
	(OR)			
c.	Explain the Square law diode modulation method for AM generation.	8	CO3	K2
d.	Write short notes on (a) PDM (b) Phase Modulation	7	CO3	K2

--- End of Paper ---