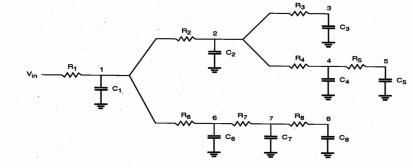
Reg.					
No					

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

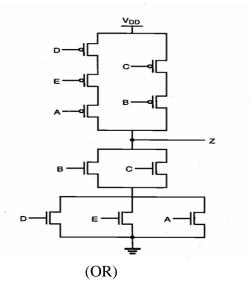
B. Tech (Sixth Semester - Regular) Examinations, April 2025

21BECPC36001 – Digital VLSI Design

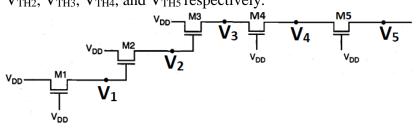
(ECE)


Time: 3 hrs

Maximum: 70 Marks


1		via Annun	1. 70 1010	arks		
	Answer ALL questions (The figures in the right hand margin in directs marks)					
Р	(The figures in the right hand margin indicate marks) ART – A	$(2 \times 5 =$	(2 x 5 = 10 Marks)			
	Answer ALL questions	(_ ~ ~	CO #	Blooms		
-	Define Moore's Law.		CO1	Level K1		
	Define accumulation and inversion region in MOS capacitor.		C01	K1 K1		
	Basic difference between a static CMOS and a dynamic CMOS.		CO4	K2		
	What is the significance of CMOS technology in digital VLSI design?		CO4	K2		
e.	Define the noise margin and write the expression noise margin high.		CO3	K2		
Р	ART – B	$(15 \times 4 =$	15 x 4 = 60 Marks)			
Ansv	ver All the questions	Marks	CO #	Blooms Level		
2. a.	Explain the various VLSI design methodologies. Compare and contrast the Ful Custom, Semi-Custom, and Programmable Logic design approaches in terms design time, flexibility, performance, and cost.		CO2	K4		
b.	of hierarchy involved in combining individual 1-bit full adders to form the 4-b adder.		CO3	К4		
	(OR)	0	604	144		
c.	Describe the fabrication process flow for manufacturing a VLSI (Very-Larg Scale Integration) chip. Discuss the various steps involved, from wafe preparation to packaging.		CO1	К1		
d.		ne	CO1	K1		
3.a.	Consider a MOS structure comprising a n-type doped silicon substrate, a silico dioxide layer, and a metal gate. The equilibrium Fermi potential of the dope silicon substrate is $q\phi_{Fn} = 0.2$ eV. Electron affinity of silicon and the metal at 4.15 and 4.1eV respectively. Calculate the built-in potential difference across th MOS system. Draw the Energy band diagrams of the components that make u the MOS system.	ed re ne	CO1	К1		
b.		7	CO2	КЗ		
	(OR)					
c.	Design the combinational logic circuit $Y = \overline{A.B.C}$ using CMOS technology	5	CO4	К6		
d.	Write the code of SR FF using Verilog code	10	CO4	К6		
4.a.	Explain working principle of CMOS transmission gate and find effective resistance of three different region	/e 8	CO4	К4		
b.		7	CO3	K4		

- (OR)
- c. Consider a CMOS inverter circuit with the following parameters: VDD =3.3 V 8 CO3 K4 $V_{T,n}$ =0.6V, $V_{T,p}$ =-0.7 V k_n = 200 µA/V2 k_p = 80 µA/V2 (5.83) (5.84) Calculate the noise margins of the circuit.
- d. Find the Elmore delay at node 1 node 7



- 5.a. Draw the CMOS SR-Latch circuit based on NAND gate and explain its function 10 CO4 K2 and write the corresponding truth table
 - b. Find an equivalent $(W/L)_P$ and $(W/L)_n$ of CMOS inverter circuit for simultaneous 5 CO3 K3 switching of all inputs, assuming that $(W/L)_P = 5$ for all pMOS transistors and (W/L) = 6 for all nMOS transistors.

- c. Explain the voltage bootstrapping method and discuss the need for bootstrapping, 10 CO3 K4 illustrate the working with a suitable circuit diagram, and derive the expression for the capacitor ratio $\frac{C_{boot}}{C_r}$
- d. Observe the given circuit and find the voltage V₁, V₂, V₃, V₄, and V₅. Consider 5 CO3 K4 the threshold voltage for nMOS transistor M1, M2, M3, M4, and M5 as V_{TH1}, V_{TH2}, V_{TH3}, V_{TH4}, and V_{TH5} respectively.

--- End of Paper ---