No Gandhi Institute of Engineering and Technology University, Odisha, Gunupur

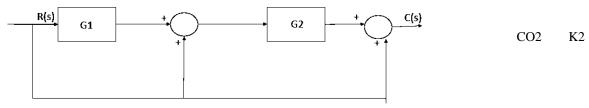
(GIET University)

B. Tech (Sixth Semester - Regular/Supplementary) Examinations, April 2025

21BECPC36003 - Control Systems

(ECE)

Time: 3 hrs


Maximum: 70 Marks **Answer ALL questions** (The figures in the right hand margin indicate marks) PART – A $(2 \times 5 = 10 \text{ Marks})$

Q.1. Answer ALL questions

What are the advantages of closed loop control system? a.

Reg.

- The open loop system with transfer function $G(s) = \frac{K}{(s+2)(s+1)}$ is Connected with unity b. CO2 negative feedback configuration. Find out the closed loop system transfer function.
- A system with transfer function $G(s) = \frac{S}{(2s+1)}$ is subjected to a sinusoidal signal cos(t). c. CO3 K1 find out the value of output amplitude.
- The expression of C(s)/R(s) of the system as shown in figure is. d.

Draw the polar plot for the transfer function $G(s) = \frac{1}{s(s+1)}$. e.

PART – B

Answer All the questions

				Level
2. a.	Find out the expression of peak time and settling time for a second order under	8	CO2	K2
	damped system.			
b.	How time constant of a first order system influences its output response when it	7	CO2	K2
	is subjected to a step input explain with an example?			
	(OR)			
c.	Characteristic equation of a system is given as $s^5 + s^3 + s^2 + 1 = 0$. Find the	8	CO2	K3
	number of poles lies on righthand side of s plane.			
d.	The open loop system with transfer function $G(s) = \frac{K}{(s+2)(s+3)(s+1)}$ is Connected	7	CO2	K2
	with unity negative feedback configuration. Find the range of K for system			
	stability.			
3 a	For the RLC Circuit shown in figure develop the state space model by	8	CO4	K3

(15 x 4 = 60 Marks)

Marks

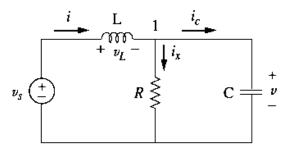
CO3

CO#

CO #

CO1

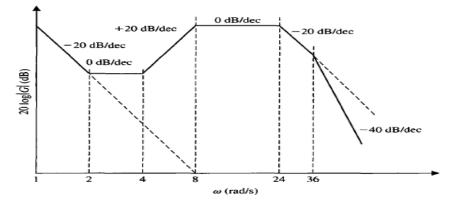
Blooms


Level

K1

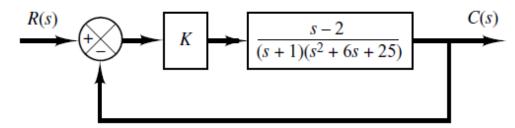
K2

K2


Blooms

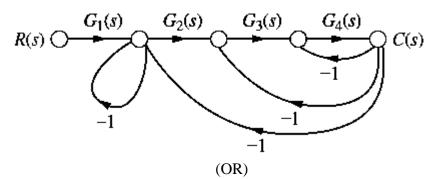
b. A system is described by the state space equation dx(t)/dt = Ax(t)+BU and the 7 CO4 K2 output is given by Y=C x(t).

If $A = \begin{bmatrix} 0 & 1 \\ 0 & -3 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$ then find out the transfer function of the system.


c. Find out the expression of transfer function from the Bode plot given below and 8 CO2 K3 also find out the steady state error for unit ramp input.

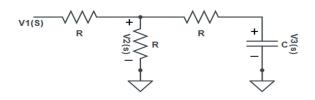
- d. The open loop system with transfer function $G(s) = \frac{K}{s-1}$ is connected in unity negative feedback configuration. Draw the Nyquist plot for the above system and comment upon the stability of the system.
- 4.a. The open loop system with transfer function $G(s) = \frac{K(s+4)}{(s+2)(s+1)}$ is connected in 8 CO2 K3 unity negative feedback configuration. Draw the root locus diagram for the above system and comment upon the range of K for which the system can behave like underdamped system.
 - b. The loop gain G(s)H(s) of a system is $\frac{2(s+1)}{s^2}$ find out the gain crossover 7 CO2 K2 frequency and phase margin and also explain how phase margin influences the stability.

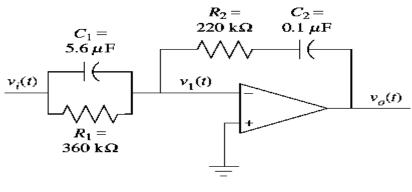
(OR)


c. For the system shown in figure determine the range of K for system to be stable 8 CO3 K3

d. What are the different types of second order systems explain about them with 7 CO3 K2

their pole locations using s plane?


- 5.a. Fin the expression for resonant peak for a seconder system and comment how 8 CO3 K2 damping ratio influences resonant peak?
- b. For the signal flow graph shown in figure fin out the expression of $\frac{C(s)}{R(S)}$ 7 CO1 K2


c. For the circuit shown in figure develop the signal flowgraph to find out / 8 CO1 K3 $\frac{V_3(s)}{V_1(s)}$ using masons gain formula.

CO1

K2

d. Find the transfer function $\frac{VO(s)}{Vi(s)}$ of the circuit shown below 7

--- End of Paper ---