| QP Code: RA22BTECH408 | Reg. |  |  |  |  |  | AR 21/22 |
|-----------------------|------|--|--|--|--|--|----------|
|                       | N.T  |  |  |  |  |  |          |

## Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)



B. Tech (Sixth Semester) Examinations, April 2025

## 21BECPC36002 – Microwave Engineering (ECE)

Time: 3 hrs Maximum: 70 Marks

Answer ALL questions

|        | Answer ALL questions (The figures in the right hand margin indicate marks)                                                                                                                                                                       |                  |       |                 |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------|-----------------|
| PA     | $(2 \times 5 = 10 \text{ Marks})$                                                                                                                                                                                                                |                  |       |                 |
| Q.1. A | Answer ALL questions                                                                                                                                                                                                                             |                  | CO#   | Blooms<br>Level |
|        | An antenna has a loss resistance 10 ohms, power gain of 20 and directivity 22. C ts radiation resistance.                                                                                                                                        | alculate         | CO4   | K1              |
| b. A   | A loss less transmission line has $L = 110$ nH/m, $C = 20$ pF/m. Find $Z_0$ .                                                                                                                                                                    |                  | CO1   | K1              |
| c. I   | Define isolator and write its S parameter.                                                                                                                                                                                                       |                  | CO2   | K2              |
| d. V   | Write down the Directivity value of the Hertzian and Halfwave dipole Antennas.                                                                                                                                                                   |                  | CO3   | K2              |
| e. I   | Define velocity modulation.                                                                                                                                                                                                                      |                  | CO4   | K2              |
| PA     | RT - B                                                                                                                                                                                                                                           | $(15 \times 4 =$ | 60 Ma | arks)           |
| Answ   | er All the questions                                                                                                                                                                                                                             | Marks            | CO#   | Blooms<br>Level |
| 2. a.  | Explain circuit model and derive the general equation of transmission line. Also write about lossless and Distortion less transmission line.                                                                                                     | 12               | CO1   | К3              |
| b.     | For a terminated transmission line $Z_L = 200 \Omega$ , and $Z_0 = 100 \Omega$ , Find out VSWR (OR)                                                                                                                                              | . 3              | CO1   | K2              |
| c.     | Define and write Key features of a stub. Explain in detail with proper derivation about single stub matching.                                                                                                                                    | 10               | CO1   | К3              |
| d.     | Define transmission loss. In a lossless Transmission line, $Z_L = 100 \Omega$ , $Z_0 = 50 \Omega$ Find out transmission loss.                                                                                                                    | , 5              | CO1   | K2              |
| 3.a.   | A rectangular waveguide is having dimension $a = 2.5$ cm and $b = 1$ cm and operates at 15 GHz. Find out the cutoff frequency for $T_{10}$ , $T_{21}$ , $T_{11}$ mode.                                                                           | l 5              | CO2   | K1              |
| b.     | Define TEM waves and write its various characteristics. A rectangular waveguide with dimension 5 cm x 3 cm operates at 25 GHz frequency. Find out cutoff frequency, cut off wavelength, guided wavelength and phase velocity for TM <sub>1</sub> | f                | CO2   | К2              |
|        | mode.                                                                                                                                                                                                                                            | Į.               |       |                 |
|        | (OR)                                                                                                                                                                                                                                             |                  |       |                 |
| c.     | Explain about the S-parameters of directional coupler, its types and performance parameters along with its applications.                                                                                                                         | 10               | CO2   | K2              |
| d.     | Write a short note on Attenuators. A 5 dB attenuator is having VSWR 1.2 assuming the attenuator is reciprocal find its S-matrix.                                                                                                                 | , 5              | CO2   | K2              |
| 4.a.   | Explain in detail construction, operation and application of reflex klystron. Draw the Applegate diagram.                                                                                                                                        | 12               | CO3   | K2              |
|        |                                                                                                                                                                                                                                                  | _                |       |                 |

CO3

K2

b. Write the formula for electron Trajectory in Magnetron. And write its applications

(OR)

| c.   | A normal magnetron has the following parameters $b = 0.45$ m. Magnetic flux       | 5  | CO3 | K1 |
|------|-----------------------------------------------------------------------------------|----|-----|----|
|      | density is 1.2 mwb/m <sup>2</sup> . Determine hall cut-off voltage.               |    |     |    |
| d.   | Write key features of Schottky diode and PIN diode with their applications.       | 10 | CO3 | K2 |
|      | Compare VI characteristics of Schottky with PN junction diode.                    |    |     |    |
| 5.a. | Write short note on Radiation Pattern and MASER.                                  | 8  | CO4 | K2 |
| b.   | Explain the operation of Gunn diode with two valley diagrams. Also write its      | 7  | CO4 | К2 |
|      | applications.                                                                     |    |     |    |
|      | (OR)                                                                              |    |     |    |
| c.   | Write about construction, design considerations, application with pros and cons   | 12 | CO4 | K2 |
|      | of microstrip patch antenna.                                                      |    |     |    |
| d.   | Calculate the power being radiated by an antenna having a radiation resistance of | 3  | CO4 | K2 |
|      | 50 ohm and is drawing a rms current of 8A.                                        |    |     |    |
|      | End of Paper                                                                      |    |     |    |
|      |                                                                                   |    |     |    |