Reg.					
No					

К3

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

B. Tech (Sixth Semester – Regular/Supplementary) Examinations, April 2025 21BCSPE36011/22BCSPE36011 – Introduction to Digital Signal Processing

(CSE)

Time: 3 hrs

Maximum: 70 Marks

(15 x 4 = 60 Marks)

Answer ALL questions (The figures in the right hand margin indicate marks)						
PART – A		(2 x 5 = 10 Marks)				
Q.1	. Answer ALL questions	CO #	Blooms Level			
a.	Plot the signal $x(n) = \{4, 3, 2, 1, -2\}$	CO1	K1			
b.	Differentiate between symmetric and anti-symmetric signals?	CO1	К2			
c.	What do you mean by RoC in z-transform? State its significance.	CO3	K1			
d.	Write any 2 properties of cross correlation.	CO2	К2			

d. Write any 2 properties of cross correlation.CO2e. Find the z-transform of unit step function.CO4

PART – B

Answ	er all the questions	Marks	CO#	Blooms
2. a.	ven a discrete time signal $x(n) = \{2, 3, 5, 7, 9\}$. Determine $x_1(n) = x(n-2)$		CO1	Level K3
	$, x_2(n) = x(n+3), x_3(n) = x(2n-1), x_4(n) = 2x(n+1).$			
b.	Given a discrete time signal $x(n) = \{1, 2, 3, 4, 5\}$. Determine its even and odd parts.	7	CO1	К2
	(OR)			
c.	Determine whether the unit step signal is (i) Energy signal or Power Signal. (ii) Causal or not	8	CO1	КЗ
d.	What is the condition of periodicity for a discrete time signal? Determine whether	7	CO1	К2
	the signal $x(n) = \cos\left(\frac{\pi}{8}n^2\right)$ is periodic or not. If periodic determine the			
	fundamental period.			
3.a.	Determine the response of the discrete time system governed by the difference equation : $y(n) = -0.5y(n-1) + x(n)$ when the input is unit step with initial	8	CO2	КЗ
	conditions $y(-1) = \frac{1}{3}$.			
b.	Represent the given discrete time system using block diagram: $y(n)$ –	7	CO2	К2
	3y(n-2) - 7y(n-3) - 5x(n-2) - 0.5x(n-3) = x(n)			
	(OR)			
c.	A discrete time system is described as $y(n) = nx^2(n)$. Determine whether the	8	CO2	КЗ
-	system is (i) LTI system or not, (ii) Causal or not			
d.	Determine the range of values of <i>a</i> and <i>b</i> for the stability of the LTI system with impulse response $h(n) = \begin{cases} b^n & n < 0 \\ a^n & n > 0 \end{cases}$	7	CO2	K2
4.a.	Determine the output $y(n)$ of the discrete time system using convolution	8	CO3	К2
	operation where the input of the system is given by $x(n) = \{2, 3, 4, 5, 6\}$ and the impulse response is given as $h(n) = (1, 7, 3, 4, 6)$			
b.	impulse response is given as $h(n) = \{1, 7, 3, 4, 9\}$ Consider 3 discrete time signals $x_1(n), x_2(n)$ and $x_3(n)$. Then prove that	7	CO3	K1
υ.	Consider 5 discrete time signals $x_1(n), x_2(n)$ and $x_3(n)$. Then prove that	/	005	KT.

$$[x_1(n) * x_2(n)] * x_3(n) = x_1(n) * [x_2(n) * x_3(n)]$$
(OR)

- c. Perform cross correlation of the 2 sequences $x(n) = \{1, 2, 3, 4, 5\}$ and y(n) = 8 CO3 K2 $\{4, 3, 2, 1\}$.
- d. Determine the equivalent impulse response of the 2 cascade connected LTI 7 CO3 K1 system having impulse responses as $h_1(n) = \left(\frac{1}{2}\right)^n u(n)$ and $h_2(n) = \left(\frac{1}{4}\right)^n u(n)$.

5.a. Determine the z-transform along with RoC of (i) $x(n) = 0.5^n u(n)$ (ii) x(n) = 8 CO4 K2 $0.2^n u(-n-1)$

b. If $z\{x(n)\} = X(z)$ then prove that $z\{nx(n)\} = -z\frac{d}{dz}X(z)$. (OR) 7 CO4 K1

- c. Find the one sided z-transform of the discrete time signal $x(n) = na^{(n-1)}$ 8 CO4 K1
- d. Determine the inverse z-transform to determine x(n) from the following function: 7 CO4 K2 $\mathbf{v}(z) = \frac{3+2z^{-1}+z^{-2}}{2}$

$$X(Z) = \frac{1}{1 - 3z^{-1} + 2z^{-2}}$$