Reg.						AR21/22
No						

Gandhi Institute of Engineering and Technology University, Odisha, Gunupur (GIET University)

Time: 3 hrs

B. Tech (Sixth Semester - Regular/Supplementary) Examinations, April 2025 21BBTOE36011/21BCHOE36011/22BBTOE36011/22BCHOE36011 -

Optimization Engineering

(Biotech / Chemical)

Maximum: 70 Marks

1		laximum	. /U MI	arks				
	Answer ALL questions							
P /	(The figures in the right hand margin indicate marks) PART – A (2 x 5 = 10 Marks)							
	Answer ALL questions	(4 A J =	CO #	Blooms				
a.	Explain the use of slack and surplus variable in LPP		CO1	Level K1				
	Differentiate between canonical form and standard form of LPP.		CO1	K2				
	Describe the characteristics of basic feasible solution of transportation problem.		CO2	K1				
d.	Explain the Kendal's notation for queuing problems.		CO3	K1				
	Define local maxima and global maxima of a function		CO4	K1				
РА	ART – B	(15 x 4 = 60 Marks)						
	wer <i>all</i> the questions	Marks	CO #	Blooms				
	-			Level				
2. a.	A firm makes products X and Y and has total production capacity of 9 tons per day. X and Y requires same production capacity. The firm has permanent contract to supply at least 2 tons of X and at least 3 tons of Y to another company. Each ton of X requires 20 machine-hour of production time and each ton of Y require 50 machine-hours of production time. Maximum possible machine-hours per da are 360. All the firms output can be sold and profit is made Rs 80/ Per ton of X and Rs 120/- per ton of Y. Determine the production schedule for maximum profit.	t n d 7 y X	CO1	K3				
b.		8	CO1	K4				
c.								
	$\begin{aligned} &Maximize \ Z = 2x_1 + 5x_2 \\ &x_1 + 2x_2 \le 24 \\ &3x_1 + x_2 \le 21 \\ &x_1 + x_2 \le 9, \\ &x_1, x_2 \ge 0 \end{aligned}$	15	C01	K4				
3.a.	1 2	10	CO1	K4				

b. Write the dual of the following primal

4.a.

b.

c.

5.a.

b.

c.

(OR)

c. Obtain the optimum solution of the given transportation problem.

Supply						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15	CO2	K4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Demand 7 12 17 9						
Suggest optimal assignment of the workers to jobs, if the completion time (in						
hour) of different jobs by different workers is arch given below:						
I II III IV V						
1 11 17 8 16 20	10	CO2	K4			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
A self -service store employs one cashier at its counter. Nine customers arrive on						
an average every 5 minutes while the cashier can serve 10 customers in 5 minutes,						
assuming Poisson's distribution for arrival rate and exponential distribution for the service time. Find						
	5	CO^{2}	W2			
1. Busy period of the cash counter	5	CO3	K3			
2. Average number of customers in the system.						
3. Average number of customers in the queue						
4. Average time a customer spent in the system.						
5. Average time a customer waits before being served.						
(OR)						
Use branch and bound algorithm to solve the following IPP						
$Maximize \ Z = 2x_1 + 3x_2$						
$6x_1 + 5x_2 \le 25$	15	CO3	K4			
$x_1 + 3x_2 \le 10$						
<i>x</i> ₁ , <i>x</i> ₂ are non negative integers						
Minimize $f(x) = 4x^3 + x^2 - 7x + 14$ within [0,1] using golden section search	12	CO4	K4			
method with $n = 5$	12	C04	Λ4			
Explain necessary Kuhn-Tucker conditions for maximize and minimize.	3	CO4	K2			
(OR)						
Solve the following NLPP using the Kuhn-Tucker conditions						
Maximize $Z = 2x_1^2 - 7x_2^2 + 12x_1x_2$,		~~ .				
Subject to $2x_1 + 5x_2 \le 98$	15	CO4	K4			
$x_1, x_2 \ge 0$						
End of Paper						