Reg.

No

Time: 3 hrs

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY UNIVERSITY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Fourth Semester - Regular) Examinations, April – 2025 23BCHPC24004 – Numerical Methods in Chemical Engineering

(Chemical Engg.)

Maximum: 60 Marks

AY 23

Answer ALL questions (The figures in the right-hand margin indicate marks)							
	x 5 =	10 Ma	rks)				
Q.1. Answer ALL questions		CO #	Blooms Level				
a. What is the Newton -Raphson Method.		CO1	K1				
b. Define Upper Triangular Matrix with an example.		CO2	K1				
c. Find the Lagrange's interpolating polynomial of the Data $f(0) = 1$, $f(1) = 3$, $f(3) = 55$		CO3	К2				
d. What are the Disadvantages of multistep methods?		CO4	K1				
e. Define Difference Quotient.		CO5	K1				
$\mathbf{PART} - \mathbf{B}$) x 5 =	50 Ma	arks)				
Answer ALL the questions	Marks	CO #	Blooms				
2. a. Solve the system			Level				
x+y+2z=4, $2x-y+3x=9$, $3x-y-z=2$ by LU Decomposition Method.	5	CO1	К2				
b. Find a real root of $x^3 - x - 1 = 0$, by Fixed Point Iteration Method	5	CO1	К2				
(OR)							
c. Solve $10x+2y+z=9$,							
x+10y-z=-22,	10	CO1	K2				
-2x+3y+10z=22 By Gauss -Seidel Method.							
3.a. Using the following data, Estimate the value of $f(-0.5)$ & $f(0.5)$ by Hermite							
Interpolation.							
$\begin{array}{c ccc} x & f(x) & f^{1}(x) \\ \hline \end{array}$	10	C02	K2				
-1 1 -5 1 1							
1 3 7 (OR)							
b. Obtain the piecewise linear interpolation for the function $f(x)$. Also find $f(7)$.							
X 1 2 4 8	5	CO2	КЗ				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
c. Find the Lagrange's quadratic interpolating polynomial for the data,							
x 0 1 3	5	CO2	КЗ				
y 1 3 5.5							
4.a. From the following table find $f^{\dagger}(3)$ by using By Richardson's extrapolation.							
x -1 1 2 3 4 5 7	5	CO3	КЗ				
F(x) 1 1 16 81 251 625 2401							

b.	Find the Jacobian matrix for the following system $F_1 = x^2+y^2-x = 0$ $F_2 = x^2-y^2-y = 0$ at point (2,2) with h=k=1. (OR)	5	CO3	К3
c.	Evaluate $I=\int_0^1 \frac{1}{1+x} dx$ by Simpson's rule & Romberg's Method with n=10	5	CO3	К3
d.	Find $f^1(\prod/4)$ with $h = (\prod/12)$ Given $f(x) = \sin x$, by using Backward difference formula	5	CO3	КЗ
5.a.	Evaluate y (2), if y(x) is the solution of $y^1(x) = (x+y)$ given y (0) =1 by using Adams Moulton method of 3^{rd} order	5	CO4	КЗ
b.	Evaluate y (2), given $y^1(x)=0.5(x+y) \& y(0)=2$ by Adams Bash forth method of order 4.	5	CO4	КЗ
	(OR)			
c.	Estimate y (0.4), for the initial value problem $y^1 = -2xy^2$ & y (0) =1 by Adams bash- forth predictor –corrector formula	5	CO4	КЗ
d.	Using Runge –Kutta Method (R-K method) find y (0.2), Given $y^1 = x + y$, $y(0) = 1$	5	CO4	K3
6.a.	Solve $U_{xx} = U_t$ given $U(0, t) = 0$ & $U(1, t) = t$ & $U(x, 0) = \sin \pi x$. By Bender-Schmidt formula. find the values of U up to t=5. assume h=k=1	5	CO5	КЗ
b.	Explain about the Method of solution for Laplace Equation. (OR)	5	CO5	КЗ
c.	Solve the equation $U_{xx} = U_t$ subject to U (x,0) =0, U (0, t) = 0 & U (1, t) =t for two-time steps with h=1, by Crank –Nicholson Method.	5	CO5	КЗ
d.	Solve $4U_{xx} = U_t$. Given u (0, t) =0; u (4, t) =0 with initial condition u(x,0) =x(4- x) and u _t (x,0) =0; Assume h=1/4, find the values of u up to one step in t. End of Paper	5	CO5	K3