QP Code: RA23BTECH110

Time: 3 hrs

Reg.

No

GANDHI INSTITUTE OF ENGINEERING AND TECHNOLOGY, ODISHA, GUNUPUR (GIET UNIVERSITY)

B. Tech (Fourth Semester - Regular) Examinations, April – 2025 23BCHPC24001 - Chemical Engineering Thermodynamics

(Chemical Engineering)

Maximum: 60 Marks

Graph paper is to be provided.								
(The figures in the right hand margin indicate marks)								
$\mathbf{PART} - \mathbf{A} \qquad \qquad 2 \ge 5 = 1$			10 Marks)					
Q.1. Answer ALL questions			CO #	Blooms Level				
a. Classify the term thermody	namic system and give one example of each.		CO1	K1				
 b. A renowned laboratory reports quadruple-point coordinates of 10.2 Mbar and 24.1°C for four phase equilibrium of allotropic solid forms of the exotic chemical β-miasmone. Evaluate the claim. 			CO2	K3				
c. Write the reason behind the death of aquatic animals in summer season, explain it through Henry's law.		CO2	K3					
d. Write the application of Gi	bbs-Duhem equation.		CO1	K2				
e. How will you know about t	he feasibility of a chemical reaction from its Gibbs free	energy?	CO2	K2				
PART – B		(10 x 5 =	= 50 Ma	arks)				
Answer ALL the questions		Marks	CO #	Blooms Level				
2. a. Derive the expression of	first law of thermodynamics for closed system.	5	CO1	K2				
density ρ and its partial d 6 bar-1. To what pressu	ansivity and isothermal compressibility as function of herivatives. For water at 500C and 1 bar, $\kappa = 44.18 \times 10$ - are must water be compressed at 500C to change its that κ is independent of pressure P.	5	CO2	K4				
	(OR)							
-	an initial condition of 1 bar and 298.15 K (25° C) to a 88.15K (25° C) by two different mechanically reversible tem.							
	olume followed by cooling at constant pressure. on followed by cooling at constant volume.	10	CO2	K4				
$C_p = (7/2)R$. Calculate the	gas with the constant heat capacities, $C_v = (5/2) R$ and ne work required, heat transferred, and the changes in alpy of the air for each process.							
3.a. Write short notes on P-T	diagram for pure substances.	4	CO1	K2				
heat sink reservoir at 30	t operates with heat source reservoir at 350 0 C and a 0 0 C. It has a thermal efficiency equal to 55% of the ficiency for the same temperatures.							
_	fficiency of the plant? must the heat source reservoir be raised to increase the plant to 40%? Again η is the 55% of the Carnot engine	6	CO2	K4				

	(OR)			
c.	Derive the expression of entropy change for ideal gas.	5	CO1	K2
d.	A 40 kg steel casting ($C_p = 0.5 \text{ kJ kg}^{-1} \text{ K}^{-1}$) at temperature of 450 ^{0}C is quenched in 150 kg of oil ($C_p = 2.5 \text{ kJ kg}^{-1} \text{ K}^{-1}$) at 25 ^{0}C . If there are no heat losses, what			
	is the change in entropy of	5	CO2	K4
	(a) the casting(b) the oil			
	(c) both considered together?			
4.a.	Binary system of acetonitrile (1)/ nitromethane (2) conforms closely to Raoults			
	law. Vapor pressures for the pure species are given by the following Antoine			
	equations:			
	$\ln P_1^{sat} / kPa = 14.2724 - \frac{2945.47}{T - 49.15}$	10	CO3	K3
	$\ln P_2^{sat} / kPa = 14.2043 - \frac{2972.64}{T-64.15}$	10	005	RJ
	Given T is in K in the Antoine equation			
	Prepare a graph showing T vs x_1 and T vs y_1 for a pressure of 70 kPa by using			
	the above Antoine equation.			
	(OR)			
b.	For the system methanol (1) /methyl acetate (2) , the following equations provide			
	a reasonable correlation of the activity coefficients: $\ln \gamma_1 = Ax_2^2 \ln \gamma_2 = Ax_1^2 \text{where } A = 2.771 - 0.00523 \text{ T}$			
	In addition, the following Antoine equations provide vapor pressures.			
	$\ln P_1^{sat}/kPa = 16.59158 - \frac{3643.31}{T-33.424},$			
		10	CO2	K4
	$\ln P_2^{sat} / kPa = 14.25326 - \frac{2665.544}{T - 53.424}$			
	Where T is in K and vapor pressures in kPa. Assuming the validity of modified			
	Raoult's law, calculate (a) P and $\{y_i\}$ for T= 318.15K and x_1 = 0.25			
	(b) P and $\{x_i\}$ for T= 318.15 K and x_1 =0.60			
5.a.	Derive the expression for Gibbs-Duhem theorem from partial molar properties.	5	CO2	K3
b.	The enthalpy of a binary liquid system of species 1 and 2 at fixed T and P is represented by the equation			
	$H=400x_{1}+600\ x_{2}+x_{1}\ x_{2}\ (40x_{1}+20x_{2})$	5	CO3	K4
	Where H is in J mol-1. Determine expressions for H_1 and H_2 as a function of x_1 ,	-		
	numerical values for the pure species enthalpies H_1 and H_2 , and the numerical			
	values for the partial enthalpies at infinite dilution $\overline{H_1^{\infty}}$ and $\overline{H_2^{\infty}}$. (OR)			
c.	Prove that			
	(a) $dH = C_p dT + (1 - \beta T) V dP$	6	CO2	K4
	(b) $dS = C_p \frac{dT}{T} - \beta V dP$		ac t	***
d.	Derive the expression for criteria of phase equilibrium in terms of fugacity.	4	CO1	K3
6.a.	For the system in which the following reaction occurs,	5	CO2	K3
	$CH_4 + H_2O = CO + 3H_2$			

b.	Assume there are present initially 2 mol CH_4 , 1 mol H_2O , 1 mol CO, and 4 mol H_2 . Determine expressions for the mole fractions y_i as functions of ε . Derive the expression relating standard Gibb's energy change and equilibrium constant. (OR)	5	CO2	K4
c.	Determine the number of degrees of freedom F for the following:(i) A system of two miscible non-reacting species which exists as an azeotrope in vapor/liquid equilibrium	5	CO2	K3
Ŀ	 (ii) A system consisting of the gases CO, CO₂, H₂, H₂O, CH₄ in chemical equilibrium 			
d.	The water gas shift reaction $CO_{(g)} + H_2O_{(g)} \rightarrow CO_{2(g)} + H_{2(g)}$ is carried out under following condition. The reactants consist of 1 mole of H ₂ O and 1 mole of CO. The temperature is 1100 K and the pressure is 1 bar. Given at 1100 K the value of lnK = 0 for this reaction. Calculate the fraction of steam reacted assuming ideal gas mixture	5	CO2	K4

--- End of Paper ---